Browse > Article
http://dx.doi.org/10.4283/JMAG.2009.14.2.062

Electrical and Magnetic Properties of BiFeO3 Multiferroic Ceramics  

Roy, M. (Department of Physics M. L. S. University)
Jangid, Sumit (Department of Physics M. L. S. University)
Barbar, Shiv Kumar (Department of Physics M. L. S. University)
Dave, Praniti (Department of Physics M. L. S. University)
Publication Information
Abstract
The multiferroic $BiFeO_3$ has been investigated extensively in both thin film and ceramic form. However, the synthesis of a perfect sample with high resistivity is a prerequisite for examining its properties. This paper reports the synthesis of multiferroic $BiFeO_3$ along with its structural, electrical and magnetic properties in ceramic form. Polycrystalline ceramic samples of $BiFeO_3$ were synthesized by solid-state reaction using high purity oxides and carbonates. The formation of a single-phase compound was confirmed by x-ray diffraction and its lattice parameters were determined using a standard computer program. The microstructural studies and density measurement confirmed that the prepared samples were sufficiently dense for an examination of its electrical and magnetic properties. The dc electrical conductivity studies show that the sample was resistive with an activation energy of ${\sim}0.81\;eV$. The magnetization measurement showed a linear ($M{\sim}H$) curve indicating antiferromagnetic characteristics.
Keywords
multiferroic; X-ray diffraction; conductivity; SEM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).   DOI   ScienceOn
2 M. M. Kumar, V. R. Palkar, K. Shrinivas, and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).   DOI   ScienceOn
3 G. A. Smolenski, A. I. Agranovskaya, and V. A. Isupov, Fiz. Tverd. Tela, 1, 990 (1959) [Sov. Phys. Solid State 1, 149 (1959)].
4 E. Ascher, H. Rieder, H. Schmid, and H. Stossel, J. Appl. Phys. 37, 1404 (1966).   DOI
5 J. Chang, H. M. Jang, and S. Kim, J. of Magnetics 11, 108 (2006).   과학기술학회마을   DOI   ScienceOn
6 M. Flebig, T. Lottermoser, D. Frohlich, A. V. Golsev, and R. V. Pisarev, Nature (London) 419, 819 (2002).
7 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).   DOI   ScienceOn
8 N. G. Kim, Y. S. Koo, and J. H. Jung, J. of Magnetics 11, 164 (2006).   과학기술학회마을   DOI   ScienceOn
9 M. M. Kumar, A. Shrinivas, S. V. Suryanarayana, and T. Bhimasankaran, Phys. Status Solidi A 165, 17 (1998).   DOI
10 Y. Jun, W. Moon, C. Chang, H. Kim, H. Ryu, J. Kim, K. Kim, and S. Hong, Solid State Commun. 135, 133 (2005).   DOI   ScienceOn
11 A. J. Jacobson and B. E. F. Fender, J. Phys. C: Solid State Phys. 8, 844 (1975).   DOI   ScienceOn
12 S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Dokl 7, 742 (1963).
13 J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).   DOI   ScienceOn
14 G. A. Smolenski and V. A. Ioffe, Communication no. 71, Colloque International du Magnetisme Grenoble (1958)
15 N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).   DOI   ScienceOn
16 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, and R. Ramesh, Science 299, 1719 (2003).   DOI   ScienceOn
17 H. Schmid, Ferroelectrics 162, 317 (1994).   DOI
18 T. Kimura, T. Goto, H. Shintani, K. Ishizada, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).   DOI   ScienceOn
19 J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).   DOI   ScienceOn