DOI QR코드

DOI QR Code

Detwinning Monoclinic Phase BiMnO3 Thin Film

  • Dash, Umasankar (Department of Physics, Hankuk University of Foreign Studies) ;
  • Raveendra, N.V. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Jung, Chang Uk (Department of Physics, Hankuk University of Foreign Studies)
  • Received : 2016.05.19
  • Accepted : 2016.06.09
  • Published : 2016.06.30

Abstract

$BiMnO_3$ has been a promising candidate as a magnetoelectric multiferroic while there have been many controversial reports on its ferroelectricity. The detailed analysis of its film growth, especially the growth of thin film having monoclinic symmetry has not been reported. We studied the effect of miscut angle, the substrate surface, and film thickness on the symmetry of $BiMnO_3$ thin film. A flat $SrTiO_3$ (110) substrate resulted in a thin film with three domains of $BiMnO_3$ and 1 degree miscut in the $SrTiO_3$ (110) substrate resulted in dominant domain preference in the $BiMnO_3$ thin film. The larger miscut resulted in a nearly perfect detwinned $BiMnO_3$ film with a monoclinic phase. This strong power of domain selection due to the step edge of the substrate was efficient even for the thicker film which showed a rather relaxed growth behavior along the $SrTiO_3$ [1-10] direction.

Keywords

References

  1. O. T. Tambunan, K. J. Parwanta, S. K. Acharya, B. W. Lee, C. U. Jung, Y. S. Kim, B. H. Park, H. Jeong, J.-Y. Park, M. R. Cho, Y. D. Park, W. S. Choi, D.-W. Kim, H. Jin, S. Lee, S. J. Song, S.-J. Kang, M. Kim, and C. S. Hwang, Appl. Phys. Lett. 105, 063507 (2014). https://doi.org/10.1063/1.4893323
  2. S. K. Acharya, R. V. Nallagatla, O. T. Tambunan, B. W. Lee, C. Liu, C. U. Jung, B. H. Park, J.-Y. Park, Y. Cho, D.-W. Kim, J. Jo, D.-H. Kwon, M. Kim, C. S. Hwang, and S. C. Chae, ACS Appl. Mater. Interfaces 8, 7902 (2016). https://doi.org/10.1021/acsami.6b00647
  3. B. W. Lee and C. U. Jung, Appl. Phys. Lett. 96, 102507 (2010). https://doi.org/10.1063/1.3334727
  4. Q. Gan, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 70, 1962 (1997). https://doi.org/10.1063/1.118792
  5. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012). https://doi.org/10.1103/RevModPhys.84.253
  6. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001). https://doi.org/10.1103/RevModPhys.73.583
  7. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908
  8. J.-H. Lee, P. Murugavel, H. J. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M.-H. Jung, Y. W. Oh, Y.-W. Kim, J. G. Yoon, J.-S. Chung, and T. W. Noh, Adv. Mater. 18, 3125 (2006). https://doi.org/10.1002/adma.200601621
  9. D. Lee, J.-H. Lee, P. Murugavel, S. Y. Jang, T. W. Noh, Y. Jo, M.-H. Jung, Y.-D. Ko, and J.-S. Chung, Appl. Phys. Lett. 90, 182504 (2007). https://doi.org/10.1063/1.2735546
  10. B. Lee, O.-U. Kwon, R. H. Shin, W. Jo, and C. U. Jung, Nanoscale Res. Lett. 9, 1 (2014). https://doi.org/10.1186/1556-276X-9-1
  11. Oswaldo Dieguez and Jorge iniguez, Phys. Rev. B 91, 184113 (2005).
  12. H. W. Jang, D. Ortiz, S.-H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson, X. Pan, R. Ramesh, and C.-B. Eom, Adv. Mat. 21, 817 (2009). https://doi.org/10.1002/adma.200800823
  13. B. W. Lee, C. U. Jung, M. Kawasaki, and Y. Tokura, J. Appl. Phys. 104, 103909 (2008). https://doi.org/10.1063/1.3028277
  14. Antonio F. Moreira dos Santos, Anthony K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84, 91 (2004). https://doi.org/10.1063/1.1636265