Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.6.222

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method  

Song, Jong-Han (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Nam, Joong-Hee (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Kang, Dae-Sik (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jung-Ho (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Byung-Ik (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Duck-Kyun (Thin Film Electronic Materials Laboratory, Hanyang University)
Chun, Myoung-Pyo (Electric Component Center, Korea Institute of Ceramic Engineering and Technology)
Abstract
$BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.
Keywords
multiferroic $BiFeO_3$ thin films; RF magnetron sputtering; M-H hysteresis loop;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Binek and B. Doudin, J. Phys. 17, 39 (2005).
2 M. Bibes and A. Barthélémy, Nature Materials 7, 425 (2008).   DOI   ScienceOn
3 A. Palewicz, T. Szumiata, R. Przenioslo, I. Sonsowska, and I. Margiolaki, Solid State Commun. 140, 359 (2006).   DOI   ScienceOn
4 M. M. Kumar and R. Palkar, Appl. Phys. Lett. 76, 19 (2000).   DOI   ScienceOn
5 Z. Guan-jun, C. Jin-rong, C. Rui, Y. Sheng-wen, and M. Zhong-yan, Trans. Nonferrous Met. Soc. China 16, 123 (2006).   DOI   ScienceOn
6 V. Fruth, L. Mitoseriu, D. Berger, A. Ianculescu, C. Matei, S. Preda, and M. Zaharescu, Solid State Chemistry 35, 193 (2007).   DOI   ScienceOn
7 I. Sosnowska and A. K. Zvezdin, J. Magn. Magn. Mater. 140-144, 167 (1995).   DOI   ScienceOn
8 T. Moriya, Phys. Rev. 120, 91 (1960).   DOI
9 J. O. Cha, J. S. Ahn, and K. B. Lee, J. Kor. Phys. Soc. 54, 2, 844 (2009).   DOI   ScienceOn
10 J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).   DOI   ScienceOn
11 T. J. Park, Georgia C. Papaefthymiou, Artur J. Viescas, Arnold R. Moodenbaugh, and Stanislaus S. Wong, Nano Lett. 7, 3, 766 (2007).   DOI   ScienceOn
12 H. Bea, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, Appl. Phys. Lett. 87, 072508 (2005).   DOI   ScienceOn
13 J. Zapta, J. Narváez, W. Lopera, M. E. Gómez, G. A. Mendoza, and P. Prieto, IEEE Trans. Magn. 44, 11 (2008).
14 Y. K. Jun and S. H. Hong, J. Ceramic Society 45, 9, 556 (2008).   DOI   ScienceOn
15 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 17, 759 (2006).   DOI   ScienceOn