• Title/Summary/Keyword: motion stage

Search Result 692, Processing Time 0.03 seconds

Speed Property Evaluation of an Inchworm Type Linear Stage (인치웜 구조를 갖는 선형 스테이지의 속도 특성연구)

  • Moon, Chan-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • Precision stages are essential device for micro machines, fiber optic assembly systems, and biology instruments. In this paper, a precision inchworm type actuator for a linear stage is proposed and evaluated. An analytic method to design an inchworm type motor is proposed. Developed actuator provides fast motion compared with a commercial inchworm actuator, and can be used as an actuator for a stage in substitution for a conventional rotary actuator.

  • PDF

Six D.O.F Ultra Fine Stage using Electromagnetic Force Control (전자기력 제어를 이용한 6 자유도 초정밀 스테이지)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

A Study on Stage Background Image Design utilizing the Motion Graphics (모션그래픽을 활용한 배경영상디자인 연구)

  • Choi, Ji-Hye;Kim, Chee-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.365-368
    • /
    • 2011
  • Image is the one of the media that satisfy the wants of people. A motion graphics is a new media stimulating not only a visual but also a hearing of people, and has gained attention by an important emotion communication way that communicates the sound and the visual messages to the audience. In this paper we study on what feelings the motion graphics used on the stage background communicates to the audience, and what its effects and efficiencies are. Because it is not generalized to apply the motion graphics to the stage background, the range of the study can't help being limited. However, recently during two or three years, the use of the motion graphics is increasing more and more, and we expect that its utilization is more expanded.

  • PDF

Modeling and optimal design of monolithic precision XYZ-stage using flexure mechanism (유연기구를 이용한 초정밀 단일체 3축 스테이지의 모델링 및 최적설계에 관한 연구)

  • Shim, Jong-Yeop;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.868-878
    • /
    • 1998
  • There are recently increasing needs for precision XYZ-stage in the fields of nanotechnology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). Force measurements are made in the AFM by monitoring the deflection of a flexible element (usually a cantilever) in response to the interaction force between the probe tip and the sample and controlling the force neasyred constant topography can be obtained. The power of the STM is based on the strong distance dependence of the tunneling current in the vacuum chamber and the current is a feedback for the tip to trace the surface topography. Therefore, it is required for XYZ-stage to position samples with nanometer resolution, without any crosscouples and any parasitic motion and with fast response. Nanometer resolution is essential to investigate topography with reasonable shape. No crosscouples and parasitic motion is essential to investigate topography without any shape distortion. Fast response is essential to investigate topography without any undesirable interaction between the probe tip and sample surface ; sample scratch. To satisfy these requirements, this paper presents a novel XYZ-stage concept, it is actuated by PZT and has a monolithic flexible body that is made symmetric as possible to guide the motion of the moving body linearly. PZT actuators have a very fast response and infinite resolution. Due to the monolithic structure, this XYZ-stage has no crosscouples and by symmetry it has no parasitic motion. Analytical modeling of this XYZ-stage and its verification by FEM modeling are performed and optimal design that is to maximize 1st natural frequencies of the stage is also presented and with that design values stage is manufactured.

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system (XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가)

  • Kim Dong-Min;Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

Noncontact Sleep Efficiency and Stage Estimation for Sleep Apnea Patients Using an Ultra-Wideband Radar (UWB 레이더를 사용한 수면무호흡환자에 대한 비접촉방식 수면효율 및 수면 단계 추정)

  • Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.433-444
    • /
    • 2020
  • This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.

Robust Control of Two-axes Precise Stage Using LMI Optimization (LMI 최적화를 이용한 2축 정밀 스테이지의 강인제어)

  • Kim, Yeung-Shik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.845-851
    • /
    • 2013
  • In this paper, a robust optimization approach is applied to the two-axes stage using a piezoelectric actuator for precise motion tracking. Robust control is based on LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) control. Further, an LMI (linear matrix inequality) is used to find the optimal parameter in the loop transfer recovery step, instead of a trial and error method. A decoupler in the shape of FIR filter is added to reduce the coupling effect between the motions of the two axes, and hence, the feedback control loop is designed independently for each axis motion. The experimental result shows that the proposed control scheme can be applied effectively for motion control of the two-axes stage.

Modeling and Motion Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀 스테이지의 모델링 및 운동제어)

  • Kim, Yeung-Shik;Kim, Jai-Ik;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.51-58
    • /
    • 2010
  • This paper suggests a control technique of the two axes precision stage. The stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic motion of the stage is analysed by the finite element method and identified by the frequency domain modeling technique based on the experimental data. The sliding mode control with integrator is applied to improve the tracking ability of the stage to the complex reference input signal. Experimental results demonstrate that the proposed modeling schemes and control algorithm can be used effectively for the two axes stage.

Electromagnetic Actuator for Active Vibration Control of Precise System (초정밀 시스템의 능동 진동제어용 전자기 액츄에이터)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF