• Title/Summary/Keyword: modeling system

Search Result 10,764, Processing Time 0.04 seconds

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.

A Study on the Effect of Person-Job Fit and Organizational Justice Recognition on the Job Competency of Small and Medium Enterprises Workers (중소기업 종사자들의 직무 적합성과 조직 공정성 인식이 직무역량에 미치는 영향에 관한 연구)

  • Jung, Hwa;Ha, Kyu Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.73-84
    • /
    • 2019
  • Despite decades of work experience, workers at small- and medium-sized enterprises(SME) here have yet to make inroads into the self-employed sector that utilizes the job competency they have accumulated at work after retirement. Unlike large companies, SME do not have a proper system for improving the long-term job competency of their employees as they focus on their immediate performance. It is necessary to analyse the independent variables affecting the job competency of employees of SME to derive practical implications for the personnel of SME. In the preceding studies, there are independent variable analyses that affect job competency in specialized industries, such as health care, public officials and IT, but the analysis of workers at SME is insufficient. This study set the person-job fit and organizational justice based on the prior studies of the independent variables that affect the job competency of SME general workers as a dependent variable. The sub-variables of each variable derived knowledge, skills, experience, and desire for person-job fit, and distribution, procedural and deployment justice for organizational justice, respectively. The survey of employees of SME in Korea was conducted from February to March 2019 by Likert 5 scales, and the survey was retrieved from 323 people and analyzed in a demonstration using the SPSS and AMOS statistics package. Among the four sub-independent variables of person-job fit, knowledge, skills and experience were shown to have a significant impact on the job competency, and desire was not shown to be so. Among the three sub-independent variables of organizational justice, deployment justice has a significant impact on job competency, but distribution and procedural justices have not. Personnel managers of SME need to improve the job competency of their employees by appropriately utilizing independent variables such as knowledge, skills, experience and deployment at each stage, including recruitment, deployment, and promotion. Future job competency modeling studies are needed to overcome the limitations of this study, which fails to objectively measure job competency.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.

Study on the Multilevel Effects of Integrated Crisis Intervention Model for the Prevention of Elderly Suicide: Focusing on Suicidal Ideation and Depression (노인자살예방을 위한 통합적 위기개입모델 다층효과 연구: 자살생각·우울을 중심으로)

  • Kim, Eun Joo;Yook, Sung Pil
    • 한국노년학
    • /
    • v.37 no.1
    • /
    • pp.173-200
    • /
    • 2017
  • This study is designed to verify the actual effect on the prevention of the elderly suicide of the integrated crisis intervention service which has been widely provided across all local communities in Gyeonggi-province focusing on the integrated crisis intervention model developed for the prevention of elderly suicide. The integrated crisis intervention model for the local communities and its manual were developed for the prevention of elderly suicide by integrating the crisis intervention theory which contains local community's integrated system approach and the stress vulnerability theory. For the analysis of the effect, the geriatric depression and suicidal ideation scale was adopted and the data was collected as follows; The data was collected from 258 people in the first preliminary test. Then, it was collected from the secondary test of 184 people after the integrated crisis intervention service was performed for 6 months. The third collection of data was made from 124 people after 2 or 3 years later using the backward tracing method. As for the analysis, the researcher used the R Statistics computing to conduct the test equating, and the vertical scaling between measuring points. Then, the researcher conducted descriptive statistics analysis and univariate analysis of variance, and performed multi-level modeling analysis using Bayesian estimation. As a result of the study, it was found out that the integrated crisis intervention model which has been developed for the elderly suicide prevention has a statistically significant effect on the reduction of elderly suicide in terms of elderly depression and suicide ideation in the follow-up measurement after the implementation of crisis intervention rather than in the first preliminary scores. The integrated crisis intervention model for the prevention of elderly suicide was found to be effective to the extent of 0.56 for the reduction of depression and 0.39 for the reduction of suicidal ideation. However, it was found out in the backward tracing test conducted 2-3 years after the first crisis intervention that the improved values returned to its original state, thus showing that the effect of the intervention is not maintained for long. Multilevel analysis was conducted to find out the factors such as the service type(professional counseling, medication, peer counseling), characteristics of the client (sex, age), the characteristics of the counselor(age, career, major) and the interaction between the characteristics of the counselor and intervention which affect depression and suicidal ideation. It was found that only medication can significantly reduce suicidal ideation and that if the counselor's major is counseling, it significantly further reduces suicidal ideation by interacting with professional counseling. Furthermore, as the characteristics of the suicide prevention experts are found to regulate the intervention effect on elderly suicide prevention in applying integrated crisis intervention model, the primary consideration should be given to the counseling ability of these experts.

A Study on the Determinants of Blockchain-oriented Supply Chain Management (SCM) Services (블록체인 기반 공급사슬관리 서비스 활용의 결정요인 연구)

  • Kwon, Youngsig;Ahn, Hyunchul
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.119-144
    • /
    • 2021
  • Recently, as competition in the market evolves from the competition among companies to the competition among their supply chains, companies are struggling to enhance their supply chain management (hereinafter SCM). In particular, as blockchain technology with various technical advantages is combined with SCM, a lot of domestic manufacturing and distribution companies are considering the adoption of blockchain-oriented SCM (BOSCM) services today. Thus, it is an important academic topic to examine the factors affecting the use of blockchain-oriented SCM. However, most prior studies on blockchain and SCMs have designed their research models based on Technology Acceptance Model (TAM) or the Unified Theory of Acceptance and Use of Technology (UTAUT), which are suitable for explaining individual's acceptance of information technology rather than companies'. Under this background, this study presents a novel model of blockchain-oriented SCM acceptance model based on the Technology-Organization-Environment (TOE) framework to consider companies as the unit of analysis. In addition, Value-based Adoption Model (VAM) is applied to the research model in order to consider the benefits and the sacrifices caused by a new information system comprehensively. To validate the proposed research model, a survey of 126 companies were collected. Among them, by applying PLS-SEM (Partial Least Squares Structural Equation Modeling) with data of 122 companies, the research model was verified. As a result, 'business innovation', 'tracking and tracing', 'security enhancement' and 'cost' from technology viewpoint are found to significantly affect 'perceived value', which in turn affects 'intention to use blockchain-oriented SCM'. Also, 'organization readiness' is found to affect 'intention to use' with statistical significance. However, it is found that 'complexity' and 'regulation environment' have little impact on 'perceived value' and 'intention to use', respectively. It is expected that the findings of this study contribute to preparing practical and policy alternatives for facilitating blockchain-oriented SCM adoption in Korean firms.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.