Browse > Article
http://dx.doi.org/10.5532/KJAFM.2022.24.1.48

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012  

Kim, Kyeongsu (National Center for Agro-Meteorology)
Lee, Seung-Jae (National Center for Agro-Meteorology)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.24, no.1, 2022 , pp. 48-61 More about this Journal
Abstract
South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.
Keywords
MEGAN; Biogenic emission; BVOCs; Isoprene; Monoterpenes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, S. Y., X. Jiang, M. Lee, A. Turnipseed, A. Guenther, J. C. Kim, S. J. Lee, and S. Kim, 2013: Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmospheric environment 70, 447-453.   DOI
2 Klinger, L. F., Q.-J. Li, A. Guenther, J. Greenberg, B. Baker, and J. Bai, 2002: Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research 107(D21), ACH-16. doi:10.1029/2001JD001076.   DOI
3 Koo, Y. C., 1979: The past, present, and future of environmental laws in Korea. Paper Collection of Kyung Hee University 7, 29-54.
4 Lathiere, J., D. A. Hauglustaine, A. D. Friend, N. De Noblet-Ducoudre, N. Viovy, and G. A. Folberth, 2006: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmospheric Chemistry and Physical 6(8), 2129-2146. doi: 10.5194/acp-6-2129-2006.   DOI
5 Lee, K. H., H. C. Kim, and C. G. Hu, 2014: A Study on the estimation of BVOCs emission in Jeju Island (1). Journal of Environmental Science International 23(12), 2057-2069.   DOI
6 Niinemets, U., U. Kuhn, P. C. Harley, M. Staudt, A. Arneth, A. Cescatti, P. Ciccioli, L. Copolovici, C. Geron, A. Guenther, J. Kesselmeier, M. T. Lerdau, R. K. Monson, and J. Penuelas, 2011: Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8, 2209-2246. doi:10.5194/bg-8-2209-2011.   DOI
7 Kim, J. C., 2001: Development of a Novel Sampling Technique for Natureal VOC Emissions. Journal of Korean Society for Atmospheric Environment 17(E2), 61-70.
8 Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 6, 3181-3210.   DOI
9 Geron, C., A. Guenther, J. Greenberg, T. Karl, and R. Rasmussen, 2006: Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmospheric Environment 40(9), 1645-1660.   DOI
10 Guenther, A., P. Zimmerman, and M. Wildermuth, 1994: Natural volatile organic compound emission rate estimates for US woodland landscapes. Atmospheric Environment 28(6), 1197-1210.   DOI
11 Hewitt, C. N., K. Ashworth, A. Boynard, A. Guenther, B. Langford, A. R. MacKenzie, P. K. Misztal, E. Nemitz, S. M. Owen, M. Possell, T. A. M. Pugh, A. C. Ryan, and O. Wild, 2011: Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience 4(10), 671-674. doi:10.1038/ngeo1271.   DOI
12 Guenther, A., C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of geophysical research 100(D/5), 8873-8892.   DOI
13 Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, X. and Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6), 1471-1492, doi: 10.5194/gmd-5-1471-2012.   DOI
14 Guenther, A. B., 2012: Upscaling biogenic VOC emissions from leaves to landscapes, in: Biology, Controls and Models of Tree Volatile Organic Compound Emissions, edited by: Niinemets, U. and Monson, R., Springer Tree Physiology series.
15 Holzinger, R., A. Lee, K. T. Paw, and U. A. H. Goldstein, 2005: Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmospheric Chemistry and Physics 5(1), 67-75. doi:10.5194/acp-5-67-2005.   DOI
16 Jang, Y., Y. Eo, M. Jang, J. H. Woo, Y. Kim, J. B. Lee, and J. H. Lim, 2020: Impact of land cover and leaf area index on BVOC emissions over the Korean Peninsula. Atmosphere 11(8), 806.   DOI
17 Naik, V., C. Delire, and D. J. Wuebbles, 2004: Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2. Journal of Geophysical Research 109(D6), D06301. doi: 10.1029/2003JD004236.   DOI
18 Laffineur, Q., M. Aubinet, N. Schoon, C. Amelynck, J. F. Muller, J. Dewulf, H. Van Langenhove, K. Steppe, M. Simpraga, and B. Heinesch, 2011: Isoprene and monoterpene emissions from a mixed temperate forest. Atmospheric Environment 45(18), 3157-3168.   DOI
19 Cho, K. T., J. C. Kim, and J. H. Hong, 2006: A study on the comparison of biogenic VOC (BVOC) emissions estimates by BEIS and CORINAIR methodologies. Journal of Korean Society for Atmospheric Environment 22(2), 167-177.
20 Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. L. Wang, and A. Guenther, 2009: Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biology 15(5), 1127-1140.   DOI
21 Muller, J.-F., T. Stavrakou, S. Wallens, I. De Smedt, M. Van Roozendael, M. J. Potosnak, J. Rinne, B. Munger, A. Goldstein, and A. B. Guenther, 2008: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry Physics 8, 1329-1341. doi: 10.5194/acp-8-1329-2008.   DOI
22 M. Zhang, C. Zhao, Y. Yang, Q. Du, Y. Shen, S. Lin, D. Gu, W. Su and C. Liu., 2021: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development 14(10), 6155-6175. doi:10.5194/gmd-14-6155-2021.   DOI
23 Pierce, T. E., and P. S. Waldruff, 1991: PC-BEIS: a personal computer version of the biogenic emissions inventory system. Journal of the Air & Waste Management Association 41(7), 937-941.   DOI
24 Kim, H.-K., J.-H. Woo, R. S. Park, C. H. Song, J.-H. Kim, S.-J. Ban, and J.-H. Park, 2014: Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMAs), Korea. Atmospheric Chemistry and Physics 14(14), 7461-7484. doi:10.5194/acp-14-7461-2014.   DOI
25 Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther, 1998: Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research 103(D19) 25611-25629.   DOI
26 Oderbolz, D. C., S. Aksoyoglu, J. Keller, I. Barmpadimos, R. Steinbrecher, C. A. Skjoth, C. Plass-Dulmer, and A. S. H. Prevot, 2013: A comprehensive emission inventory of biogenic volatile organic compounds in Europe: Improved seasonality and land-cover. Atmospheric Chemistry Physics 13(4), 1689-1712. doi:10.5194/acp-13-1689-2013.   DOI
27 Oleson, K. W., D. M. Lawrencce, B. Gordon, M. G. Flanner, E. Kluzek, J. Peter, S. Levis, S. C. Swenson, E. Thornton, J. Feddema, C. L. Heald, J.-F. Lamarque, G. Y. Niu, T. Qian, S. Running, K. Sakaguchi, L. Yang, X. Zeng, X. Zeng, and M. Decker 2010: Technical Description of version 4.0 of the Community Land Model (CLM) NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257pp.
28 NIER, 2020: Annual Report of Air Quality in Korea. GPRN 11-1480528-001980-10, 384pp.
29 Kim, D. S., 2013: Air pollution history, regulatory changes, and remedial measures of the current regulatory regimes in Korea. Journal of Korean Society for Atmospheric Environment 29(4), 353-368.   DOI
30 Li, M., X. Huang, J. Li, and Y. Song, 2012: Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data. Atmospheric Chemistry Physics Discussions 12(3), 6551-6592. doi: 10.5194 /acpd-12-6551-2012.   DOI
31 Rasmussen, R. A., and F. W. Went, 1965: Volatile organic material of plant origin in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America 53(1), 215.
32 Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using MM5 mesoscale model. Quarterly Journal of the Royal Meteorological Society 124(548), 1071-1107.   DOI
33 Van derWerf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry Physics 10(23), 11707-11735. doi:10.5194/acp-10-11707-2010.   DOI
34 Sindelarova, K., C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Muller, U. Kuhn, P. Stefani, and W. Knorr, 2014: Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry Physics 14(17), 10725-10788. doi: 10.5194/acpd-14-10725-2014   DOI
35 Tanaka, K., H.-J. Kim, K. Saito, H. G. Takahashi, M. Watanabe, T. Yokohata, M. Kimoto, K. Takata, and T. Yasunari, 2012: How have both cultivation and warming influenced annual global isoprene and monoterpene emissions since the preindustrial era?. Atmospheric Chemistry Physics 12(20), 9703-9718, doi: 10.5194/acp-12-9703-2012.   DOI
36 Tingey, D. T., M. Manning, L. C. Grothaus, and W. F. Burns, 1980: Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiology 65(5), 797-801.   DOI
37 Korea Forest Service, 2020: Statistical Yearbook of Forestry. : GPRN 11-1400000-000001-10, 449pp.
38 KOSTAT, 2020: Agricultural Area Survey. GPRN 11-1240000-000540-10, 113pp.
39 NIER, 2011: Development of the Asia Emission Inventory in Support of Integrated Modeling of Climate and Air Quality(I), 414pp.
40 Pacifico, F., S. P. Harrison, C. D. Jones, A. Arneth, S. Sitch, G. P. Weedon, M. P. Barkley, P. I. Palmer, D. Serca, M. Potosnak, T.-M. Fu, A. Goldstein, J. Bai, and G. Schurgers, 2011: Evaluation of a photosynthesis -based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present day climate conditions. Atmospheric Chemistry Physics 11(9), 4371-4389, doi:10.5194/acp-11-4371-2011.   DOI
41 Pouliot, G., and T. E. Pierce, 2009: Integration of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) into the CMAQ Modeling System. In 18th International Emission Inventory Conference, Baltimore, Maryland, 14-17.
42 Saito, T., Y. Yokouchi, Y. Kosugi, M. Tani, E. Philip, and T. Okuda, 2008: Methyl chloride and isoprene emissions from tropical rain forest in Southeast Asia. Geophysical Research Letters 35(19), L19812. doi: 10.1029/2008 GL035241.   DOI
43 Tingey, D. T., M. Manning, L. C. Grothaus, and W. F. Burns, 1979: The influence of light and temperature on isoprene emission rates from live oak. Physiologia Plantarum 47(2), 112-118.   DOI
44 Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown, R. B. Jackson, H. W. Polley, P. A. Fay, and R. Fall, 2009: Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biology 15(5), 1189-1200.   DOI
45 MOE, 1992: 1991 White Paper of Environment.
46 Bai, J. H., B. Baker, B. S. Liang, J. Greenberg, and A. Guenther, 2006: Isoprene and monoterpene emissions from an Inner Mongolia grassland. Atmospheric Environment 40(30), 5753-5758.   DOI
47 Messina, P., J. Lathiere, K. Sindelarova, N. Vuichard, C. Granier, J. Ghattas, A. Cozic, and D. A. Hauglustaine, 2016: Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics 16(22), 14169-14202.   DOI
48 Arneth, A., U. Niinemets, S. Pressley, J. Back, P. Hari, T. Karl, S. Noe, I. C. Prentice, D. Serca, T. Hickler, A. Wolf, and B. Smith, 2007: Process-based estimates of terrestrial ecosystem isoprene emissions: Incorporating the effects of a direct CO2-isoprene interaction. Atmospheric Chemistry and Physics 7(1), 31-53. doi: 10.5194/acp-7-31-2007.   DOI
49 Arneth, A., G. Schurgers, J. Lathiere, T. Duhl, D. J. Beerling, C. N. Hewitt, M. Martin, and A. Guenther, 2011: Global terrestrial isoprene emission models: Sensitivity to variability in climate and vegetation. Atmospheric Chemistry and Physics 11(15), 8037-8052. doi: 10.5194/acp-11-8037-2011.   DOI
50 Atkinson, R., and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmospheric Environment 37 197-219.   DOI
51 Baker, B., J.-H. Bai, C. Johnson, Z.-T. Cai, Q. J. Li, Y.-F. Wang, A. Guenther, J. Greenberg, L. Klinger, C. Geron, and R. Rasmussen, 2005: Wet and dry season ecosystem fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. Atmospheric Environment 39(2), 381-390.   DOI
52 Geron, C., P. Harley, and A. Guenther, 2007: Isoprene emission capacity for US tree species. Atmospheric Environment 35(19), 3341-3352.   DOI
53 Derwent, R. G., M. E. Jenkin, N. R. Passant, and M. J. Pilling, 2007: Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmospheric Environment 41(12), 2570-2579.   DOI
54 EEA, 1999: EMEP/CORINAIR CORINAIR Emission Inventory Guidebook. Group 11, 3rd ed.