DOI QR코드

DOI QR Code

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012

MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구

  • Received : 2021.12.27
  • Accepted : 2022.03.21
  • Published : 2022.03.30

Abstract

South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

한국은 국토의 약 63%가 산림으로 구성되어 있고, 16%가 농경지로 구성되어 있어 도심에서 발생하는 NOx가 산림지역과 농경지에서 발생하는 BVOCs와 결합하여 오존을 생성할 가능성이 높다. 그래서 본 연구에서는 한국의 자연 식생 BVOCs 배출을 추정하기 위해 MODIS의 토지피복 자료와 엽면적지수 자료를 이용하여 입력자료를 생성한 후 MEGAN 모델로 BVOCs의 주요 배출 물질인 이소프렌과 모노테르펜을 대상으로 2012년 6월 한 달 간 모델링을 실시하였다. 그 결과, 해당기간 동안 이소프렌은 10,495 ton, 모노테르펜은 2,709 ton이 배출되었다. 기존 국내에서 BEIS와 CORINAR를 이용하여 연구된 이소프렌의 배출량은 약 24,000 ton, 모노테르펜은 25,000 ton으로 나타났는데, 본 연구와 배출량 차이가 나타난 주된 이유는 모델 알고리즘 차이와 모델 구동 시점에서의 일사량과 기온 등 기상 조건의 차이에 의한 것으로 추정된다. 그리고 모델링 결과와 측정 값의 비교를 위하여, 6월 11일부터 12일까지 이틀 간에 걸쳐, 한국 태화산에서 활엽수의 이소프렌과 침엽수의 모노테르펜 챔버 측정 값을 항공라이다와 방형구 식생자료를 기반으로 산정된 엽생체량 값을 이용하여 산림 단위의 BVOCs 배출량으로 환산하였다. 태화산 지역에서의 MEGAN 모델과 측정 간 BVOCs 배출량을 비교한 결과, 시간적인 배출 경향은 유사했으나 이소프렌은 MEGAN 모델에서 최대 6.4배 정도 배출량이 높게 나타났고, 모노테르펜은 최대 5.6배 정도 배출량이 높게 나타났다. MODIS에서 제공되는 토지피복 자료가 한국의 토지피복 특성을 잘 반영하지 못함에도 불구하고 MEGAN 모델링 결과가 측정 값과 다른 모델에 비해 상대적으로 큰 차이를 보이지 않은 것은 MEGAN 내에 기온, 일사량 등에 의해 식생의 BVOCs 배출량을 변환시키는 파라미터들이 현실을 비교적 적절하게 반영하고 있는 것으로 사료된다. 본 연구는 국내의 BVOCs 배출량을 MEGAN 모델을 활용하여 산정하였고, 산림지에서의 실측 자료와 비교를 통해 배출량을 평가하였다는데 의의가 있으며, 산림과 대기 간의 BVOCs 상호작용 연구에 작은 도움이 될 것으로 기대된다. 국내 BVOCs 배출량을 더 정확하게 추정하기 위해서는 지형과 식생의 특성을 더욱 최신으로 반영한 토지피복 및 엽면적지수 자료의 이용, 그리고 수목 및 농작물 등과 같이 개별 식생에 따른 배출계수 등의 대한 연구가 향후에 심도 있게 이루어져야 할 것이다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업 '미세먼지에 의한 농작물 생산피해 예측 및 평가기술 개발' (세부과제번호: PJ014189032019)의 지원을 받아 이루어진 것입니다.

References

  1. Arneth, A., U. Niinemets, S. Pressley, J. Back, P. Hari, T. Karl, S. Noe, I. C. Prentice, D. Serca, T. Hickler, A. Wolf, and B. Smith, 2007: Process-based estimates of terrestrial ecosystem isoprene emissions: Incorporating the effects of a direct CO2-isoprene interaction. Atmospheric Chemistry and Physics 7(1), 31-53. doi: 10.5194/acp-7-31-2007.
  2. Arneth, A., G. Schurgers, J. Lathiere, T. Duhl, D. J. Beerling, C. N. Hewitt, M. Martin, and A. Guenther, 2011: Global terrestrial isoprene emission models: Sensitivity to variability in climate and vegetation. Atmospheric Chemistry and Physics 11(15), 8037-8052. doi: 10.5194/acp-11-8037-2011.
  3. Atkinson, R., and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmospheric Environment 37 197-219. https://doi.org/10.1016/S1352-2310(03)00391-1
  4. Bai, J. H., B. Baker, B. S. Liang, J. Greenberg, and A. Guenther, 2006: Isoprene and monoterpene emissions from an Inner Mongolia grassland. Atmospheric Environment 40(30), 5753-5758. https://doi.org/10.1016/j.atmosenv.2006.05.019
  5. Baker, B., J.-H. Bai, C. Johnson, Z.-T. Cai, Q. J. Li, Y.-F. Wang, A. Guenther, J. Greenberg, L. Klinger, C. Geron, and R. Rasmussen, 2005: Wet and dry season ecosystem fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. Atmospheric Environment 39(2), 381-390. https://doi.org/10.1016/j.atmosenv.2004.07.033
  6. Cho, K. T., J. C. Kim, and J. H. Hong, 2006: A study on the comparison of biogenic VOC (BVOC) emissions estimates by BEIS and CORINAIR methodologies. Journal of Korean Society for Atmospheric Environment 22(2), 167-177.
  7. Derwent, R. G., M. E. Jenkin, N. R. Passant, and M. J. Pilling, 2007: Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmospheric Environment 41(12), 2570-2579. https://doi.org/10.1016/j.atmosenv.2006.11.019
  8. EEA, 1999: EMEP/CORINAIR CORINAIR Emission Inventory Guidebook. Group 11, 3rd ed.
  9. Geron, C., P. Harley, and A. Guenther, 2007: Isoprene emission capacity for US tree species. Atmospheric Environment 35(19), 3341-3352. https://doi.org/10.1016/S1352-2310(00)00407-6
  10. Geron, C., A. Guenther, J. Greenberg, T. Karl, and R. Rasmussen, 2006: Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmospheric Environment 40(9), 1645-1660. https://doi.org/10.1016/j.atmosenv.2005.11.011
  11. Guenther, A., P. Zimmerman, and M. Wildermuth, 1994: Natural volatile organic compound emission rate estimates for US woodland landscapes. Atmospheric Environment 28(6), 1197-1210. https://doi.org/10.1016/1352-2310(94)90297-6
  12. Guenther, A., C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, 1995: A global model of natural volatile organic compound emissions. Journal of geophysical research 100(D/5), 8873-8892. https://doi.org/10.1029/94JD02950
  13. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  14. Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, X. and Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6), 1471-1492, doi: 10.5194/gmd-5-1471-2012.
  15. Guenther, A. B., 2012: Upscaling biogenic VOC emissions from leaves to landscapes, in: Biology, Controls and Models of Tree Volatile Organic Compound Emissions, edited by: Niinemets, U. and Monson, R., Springer Tree Physiology series.
  16. Hewitt, C. N., K. Ashworth, A. Boynard, A. Guenther, B. Langford, A. R. MacKenzie, P. K. Misztal, E. Nemitz, S. M. Owen, M. Possell, T. A. M. Pugh, A. C. Ryan, and O. Wild, 2011: Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience 4(10), 671-674. doi:10.1038/ngeo1271.
  17. Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. L. Wang, and A. Guenther, 2009: Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biology 15(5), 1127-1140. https://doi.org/10.1111/j.1365-2486.2008.01802.x
  18. Holzinger, R., A. Lee, K. T. Paw, and U. A. H. Goldstein, 2005: Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmospheric Chemistry and Physics 5(1), 67-75. doi:10.5194/acp-5-67-2005.
  19. Jang, Y., Y. Eo, M. Jang, J. H. Woo, Y. Kim, J. B. Lee, and J. H. Lim, 2020: Impact of land cover and leaf area index on BVOC emissions over the Korean Peninsula. Atmosphere 11(8), 806. https://doi.org/10.3390/atmos11080806
  20. Kim, D. S., 2013: Air pollution history, regulatory changes, and remedial measures of the current regulatory regimes in Korea. Journal of Korean Society for Atmospheric Environment 29(4), 353-368. https://doi.org/10.5572/KOSAE.2013.29.4.353
  21. Kim, H.-K., J.-H. Woo, R. S. Park, C. H. Song, J.-H. Kim, S.-J. Ban, and J.-H. Park, 2014: Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMAs), Korea. Atmospheric Chemistry and Physics 14(14), 7461-7484. doi:10.5194/acp-14-7461-2014.
  22. Kim, J. C., 2001: Development of a Novel Sampling Technique for Natureal VOC Emissions. Journal of Korean Society for Atmospheric Environment 17(E2), 61-70.
  23. Kim, S. Y., X. Jiang, M. Lee, A. Turnipseed, A. Guenther, J. C. Kim, S. J. Lee, and S. Kim, 2013: Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmospheric environment 70, 447-453. https://doi.org/10.1016/j.atmosenv.2012.11.005
  24. Klinger, L. F., Q.-J. Li, A. Guenther, J. Greenberg, B. Baker, and J. Bai, 2002: Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research 107(D21), ACH-16. doi:10.1029/2001JD001076.
  25. Koo, Y. C., 1979: The past, present, and future of environmental laws in Korea. Paper Collection of Kyung Hee University 7, 29-54.
  26. Laffineur, Q., M. Aubinet, N. Schoon, C. Amelynck, J. F. Muller, J. Dewulf, H. Van Langenhove, K. Steppe, M. Simpraga, and B. Heinesch, 2011: Isoprene and monoterpene emissions from a mixed temperate forest. Atmospheric Environment 45(18), 3157-3168. https://doi.org/10.1016/j.atmosenv.2011.02.054
  27. Lathiere, J., D. A. Hauglustaine, A. D. Friend, N. De Noblet-Ducoudre, N. Viovy, and G. A. Folberth, 2006: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmospheric Chemistry and Physical 6(8), 2129-2146. doi: 10.5194/acp-6-2129-2006.
  28. Lee, K. H., H. C. Kim, and C. G. Hu, 2014: A Study on the estimation of BVOCs emission in Jeju Island (1). Journal of Environmental Science International 23(12), 2057-2069. https://doi.org/10.5322/JESI.2014.23.12.2057
  29. Li, M., X. Huang, J. Li, and Y. Song, 2012: Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data. Atmospheric Chemistry Physics Discussions 12(3), 6551-6592. doi: 10.5194 /acpd-12-6551-2012. https://doi.org/10.5194/acpd-12-6551-2012
  30. Messina, P., J. Lathiere, K. Sindelarova, N. Vuichard, C. Granier, J. Ghattas, A. Cozic, and D. A. Hauglustaine, 2016: Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics 16(22), 14169-14202. https://doi.org/10.5194/acp-16-14169-2016
  31. Muller, J.-F., T. Stavrakou, S. Wallens, I. De Smedt, M. Van Roozendael, M. J. Potosnak, J. Rinne, B. Munger, A. Goldstein, and A. B. Guenther, 2008: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry Physics 8, 1329-1341. doi: 10.5194/acp-8-1329-2008.
  32. M. Zhang, C. Zhao, Y. Yang, Q. Du, Y. Shen, S. Lin, D. Gu, W. Su and C. Liu., 2021: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development 14(10), 6155-6175. doi:10.5194/gmd-14-6155-2021.
  33. Naik, V., C. Delire, and D. J. Wuebbles, 2004: Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2. Journal of Geophysical Research 109(D6), D06301. doi: 10.1029/2003JD004236.
  34. Niinemets, U., U. Kuhn, P. C. Harley, M. Staudt, A. Arneth, A. Cescatti, P. Ciccioli, L. Copolovici, C. Geron, A. Guenther, J. Kesselmeier, M. T. Lerdau, R. K. Monson, and J. Penuelas, 2011: Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8, 2209-2246. doi:10.5194/bg-8-2209-2011.
  35. Oderbolz, D. C., S. Aksoyoglu, J. Keller, I. Barmpadimos, R. Steinbrecher, C. A. Skjoth, C. Plass-Dulmer, and A. S. H. Prevot, 2013: A comprehensive emission inventory of biogenic volatile organic compounds in Europe: Improved seasonality and land-cover. Atmospheric Chemistry Physics 13(4), 1689-1712. doi:10.5194/acp-13-1689-2013.
  36. Oleson, K. W., D. M. Lawrencce, B. Gordon, M. G. Flanner, E. Kluzek, J. Peter, S. Levis, S. C. Swenson, E. Thornton, J. Feddema, C. L. Heald, J.-F. Lamarque, G. Y. Niu, T. Qian, S. Running, K. Sakaguchi, L. Yang, X. Zeng, X. Zeng, and M. Decker 2010: Technical Description of version 4.0 of the Community Land Model (CLM) NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257pp.
  37. Pacifico, F., S. P. Harrison, C. D. Jones, A. Arneth, S. Sitch, G. P. Weedon, M. P. Barkley, P. I. Palmer, D. Serca, M. Potosnak, T.-M. Fu, A. Goldstein, J. Bai, and G. Schurgers, 2011: Evaluation of a photosynthesis -based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present day climate conditions. Atmospheric Chemistry Physics 11(9), 4371-4389, doi:10.5194/acp-11-4371-2011.
  38. Pierce, T. E., and P. S. Waldruff, 1991: PC-BEIS: a personal computer version of the biogenic emissions inventory system. Journal of the Air & Waste Management Association 41(7), 937-941. https://doi.org/10.1080/10473289.1991.10466890
  39. Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther, 1998: Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research 103(D19) 25611-25629. https://doi.org/10.1029/98JD01804
  40. Pouliot, G., and T. E. Pierce, 2009: Integration of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) into the CMAQ Modeling System. In 18th International Emission Inventory Conference, Baltimore, Maryland, 14-17.
  41. Rasmussen, R. A., and F. W. Went, 1965: Volatile organic material of plant origin in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America 53(1), 215.
  42. Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using MM5 mesoscale model. Quarterly Journal of the Royal Meteorological Society 124(548), 1071-1107. https://doi.org/10.1002/qj.49712454804
  43. Saito, T., Y. Yokouchi, Y. Kosugi, M. Tani, E. Philip, and T. Okuda, 2008: Methyl chloride and isoprene emissions from tropical rain forest in Southeast Asia. Geophysical Research Letters 35(19), L19812. doi: 10.1029/2008 GL035241.
  44. Sindelarova, K., C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Muller, U. Kuhn, P. Stefani, and W. Knorr, 2014: Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry Physics 14(17), 10725-10788. doi: 10.5194/acpd-14-10725-2014
  45. Tanaka, K., H.-J. Kim, K. Saito, H. G. Takahashi, M. Watanabe, T. Yokohata, M. Kimoto, K. Takata, and T. Yasunari, 2012: How have both cultivation and warming influenced annual global isoprene and monoterpene emissions since the preindustrial era?. Atmospheric Chemistry Physics 12(20), 9703-9718, doi: 10.5194/acp-12-9703-2012.
  46. Tingey, D. T., M. Manning, L. C. Grothaus, and W. F. Burns, 1979: The influence of light and temperature on isoprene emission rates from live oak. Physiologia Plantarum 47(2), 112-118. https://doi.org/10.1111/j.1399-3054.1979.tb03200.x
  47. Tingey, D. T., M. Manning, L. C. Grothaus, and W. F. Burns, 1980: Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiology 65(5), 797-801. https://doi.org/10.1104/pp.65.5.797
  48. Van derWerf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry Physics 10(23), 11707-11735. doi:10.5194/acp-10-11707-2010.
  49. Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown, R. B. Jackson, H. W. Polley, P. A. Fay, and R. Fall, 2009: Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biology 15(5), 1189-1200. https://doi.org/10.1111/j.1365-2486.2008.01803.x
  50. Korea Forest Service, 2020: Statistical Yearbook of Forestry. : GPRN 11-1400000-000001-10, 449pp.
  51. KOSTAT, 2020: Agricultural Area Survey. GPRN 11-1240000-000540-10, 113pp.
  52. MOE, 1992: 1991 White Paper of Environment.
  53. NIER, 2011: Development of the Asia Emission Inventory in Support of Integrated Modeling of Climate and Air Quality(I), 414pp.
  54. NIER, 2020: Annual Report of Air Quality in Korea. GPRN 11-1480528-001980-10, 384pp.