• 제목/요약/키워드: model-based observer

검색결과 376건 처리시간 0.024초

Observer-based Feedback Controller Design for Robust Tracking of Discrete-time Polytopic Uncertain LTI Systems

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2427-2433
    • /
    • 2015
  • This paper presents an observer-based robust controller for constant reference tracking of linear time invariant systems with polytopic model uncertainties. To this end, this paper not only designs a robust integral controller gain but also suggests how to determine the robust observer gain and the observer model used in the observer. Since the observer model selection is not obvious due to the polytopic uncertainties, particular attention needs to be paid to that. This paper computes the robust controller and observer gains first. Then, the observer model is selected in a way that the whole closedloop is stable and LMIs are used in the middle of choosing the gains and observer model. Simulation examples show that the proposed observer-based feedback control successfully achieves robust reference tracking.

관측기 모델 선정을 통한 모델 불확실성을 갖는 선형 시불변 시스템 강인 안정화 (Robust Stabilization of Uncertain LTI Systems via Observer Model Selection)

  • 오상록;김정수;심형보
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.822-827
    • /
    • 2014
  • This paper presents a robust observer-based output feedback control for stabilization of linear time invariant systems with polytopic uncertainties. To this end, this paper not only finds a robust observer gain but also suggests how to determine the model used in the observer, which is not obvious due to model uncertainties in the conventional observer design method. The robust observer gain and the observer model are selected in a way that the whole closed-loop is stable by solving LMIs and BMIs (Linear Matrix Inequalities and Bilinear Matrix Inequalities). A simulation example shows that the proposed robust observer-based output feedback control successfully leads to closed-loop stability.

미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계 (Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset)

  • 이초원;손영익
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법 (Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics)

  • 최진영;좌동경
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

A new flux observer based vector control in induction motors

  • Tsuji, Mineo;Li, Hanqiang;Izumi, Katsuhiro;Kobuchi, Taiki;Yamada, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.708-713
    • /
    • 1994
  • A new flux observer based vector control system of an induction motor is constructed by using an observer in which the commanded stator currents are used to estimate the rotor flux. In this system, the flux observer is formulated by using a model of induction motor in a stationary coordinate system. By considering an observer of induction motor in a fixed co-ordinate system located on its secondary flux, a slip frequency controlled type of vector control system is also proposed. From these control schemes, the relation between the conventional slip frequency controlled type system and the observer based one is clarified. The steady-state error of the developed torque which is caused by the parameter change of induction motor is analyzed and discussed for the selection of observer gains. The poles of the observer error dynamics and those of the observer based vector control system are calculated analytically by neglecting the machine parameter change. In order to analyze the robust stability, a linear model of the observer based vector control system is proposed taking into account the machine parameter change. By using this model, the trajectories of the poles and zeros of the torque transfer function are computed and discussed. To test validity of the theoretical analysis, experiments are conducted by using a digital signal processor (TMS320C30) and a current controlled voltage source PWM inverter.

  • PDF

모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어 (Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties)

  • 김준식;이동철;최영진
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

New Strategy to Estimate The Rotor Flux of Induction Motor by Analyzing Observer Characteristic Function

  • Kim, Jang-Hwan;Park, Jong-Woo;Sul, Seung-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.51-58
    • /
    • 2001
  • This paper proposes a new strategy to estimate the rotor flux of an induction machine for the direct field oriented control. Electrical model of the induction machine presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to machine parameters. In spite of these shortcomings, the closed loop flux observer based on two models has been prevalent estimation method for the direct field oriented control. In this paper, generalized analysis method named "observer characteristic function method"is proposed to analyze the kinds of the linear flux observers in unified form. With the observer characteristic function, the estimated rotor flux error involved in the classical methods can be easily clarified. Moreover, the novel rotor flux observer based on this analysis is also presented and the effectiveness of the observer has been verified by the simulation and experimental results.

Takagi-Sugeno 퍼지 시스템의 분리 원리에 관하여 (On the Separation Principle of Takagi-Sugeno Fuzzy Systems)

  • 이호재;박진배;주영혼
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.80-83
    • /
    • 2003
  • In this note, a separation principle of the Takagi-Sugeno (T-S) fuzzy-model-based controller/observer is investigated. The separation principle of T-S fuzzy-model-based controller/observer sharing the premise parts in the fuzzy rule with directly measurable premise variables is well established. In that case, the fact that the augmented observer-based control system has the eigenvalues of the sub-closed-loop control system by the state-feedback controller and the sub-closed-loop observer error system is used to prove the separation principle. This paper studies the separation principle of T-S fuzzy-model-based controller/observer in which the premise variables cannot be directly measurable.

  • PDF

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

이산관측기에 근거한 감지시스템을 위한 정량적 성능지표 (A Quantitative Performance Index for Discrete-time Observer-based Monitoring Systems)

  • 허건수;김상진
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.138-148
    • /
    • 1995
  • While Model-based Monitoring systems based on state observer theory have shown much promise in the laboratory, they have not been widely accepted by industry because, inpractice, these systems often have poor performance with respect to accuracy, band-width, reliability(false alarms), and robustness. In this paper, the linitations of the deterministic discrete-time state observer are investigated quantitatively from the machine monitoring viewpoint. The limitations in the transient and steady-state observer performance are quantified as estimation error bounds from which performance indices are selected. Each index represents the conditioning of the corresponding performance. By utilizing matrix norm theory, an unified main index is determined, that dominates all the indices. This index could from the basis for an observer design methodology that should improve the performance of model-based monitoring systems.

  • PDF