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Abstract — In this paper, the observer based nonlinear state feedback controller has been developed to
control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel
cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems
of the state observer and model based controller. A cascade observer using the filtering technique was
used to estimate the pressure derivatives of the cathode and the anode in the system. In order to
estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using
these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system,
the nonlinear state observer was designed by using the cathode pressure estimates and the anode it.
These results will be very useful to design the state feedback controller. The validity of the proposed
observers and the controller has been investigated by using the Lyapunov’s stability analysis strategy.

Keywords: PEM fuel cell, Sliding mode observer, State feedback control.

1. Introduction

Fuel cell systems are under intensive development for
mobile and stationary power applications. In particular,
PEM fuel cells are currently in a relatively more mature
stage for ground vehicle and stationary power applications
[1, 5]. Despite a large number of studies on fuel cell
modeling, relatively few are suitable for control and
observation studies. The transient phenomena captured in
the model include the flow and inertia dynamics of the
compressor, the manifold filling dynamics (both anode and
cathode), and membrane humidity. These variables affect
the fuel cell stack voltage, and thus fuel cell efficiency and
power [1, 5]. A two-dimensional along-the-channel mass
and heat transfer model for a PEMFC(Proton Exchange
Membrane Fuel Cell) is described in [1]. This model is
used for calculation of cell performance (i.e., cell voltage
against current density), ohmic resistance and water profile
in the membrane, current distribution and variation of
temperature along the gas channel. This model is useful for
the analysis of cell performance. In [6], an adaptive
nonlinear observer was designed to estimate the partial
pressure of hydrogen in the anode channel of a fuel cell.
By treating the slowly varying inlet partial pressure as an
unknown parameter, an adaptive observer was developed
that employs a nonlinear voltage injection term. However,
this study does not treat an overall system dynamics of
PEMFC.

In this paper, a nonlinear fuel cell system model suitable
for designing the controller and the observer is introduced
to estimate the transient response and also the steady state
response. A cascade observer [2] with filtering technique is

T Corresponding Author: Dept. of Control and Instrumentation
Engineering, Halla Univerity, Korea.(kes4ever@naver.com)
Received: May 30, 2011; Accepted: August 20, 2012

designed to estimate the pressures of the cathode and the
anode. The oxygen pressure in the cathode and the
hydrogen pressure in the anode will be estimate by using
nonlinear feedback observer. The validity of the proposed
observers will be investigated by using a Lyapunov’s
stability analysis method. Nonlinear state feedback controller
will be designed to regulate each pressure.

2. System Dynamics of PEMFC

The system studied in this paper is shown in Fig. 1. It is
assumed that the cathode and anode volumes of the
multiple fuel cells are lumped as a single stack cathode and
anode volumes.

2.1 Cathode pressure model

This model includes the air compressor dynamics, the
supply manifold dynamics and the cathode dynamics. The
cathode dynamics is developed wusing the mass
conservation principle and the thermodynamic and
psychrometric properties of air [4, 7, 8].
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Fig. 1. Simplified fuel cell reactant supply system.

2.2 Anode pressure model

This model is quite similar to the cathode pressure
model. In this model, it is assumed that pure hydrogen gas
is supplied to the anode from a hydrogen tank [4, 7, 8].
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3. Observer based controller design

The cathode and anode pressures influence the voltage
generated in fuel cell stack. Those also affect the efficiency
and the power of the fuel cell. However, it is difficult to
directly measure these variables [1]. This problem can be
solved using a nonlinear observer. The observation of those
variables is needed to design of the suitable controller. The
filtered supply manifold pressure is used to design the
sliding mode observer for the cathode and anode pressures.
The nonlinear state observer for Oxygen and air pressures
in the cathode is designed using the estimated cathode
pressure. The estimates of the anode pressures are similar
to the cathode it.

3.1 Cathode pressure observer

In order to estimate the cathode pressure, we rewrite the
eq. (2) as follows:
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=P | D
pw aT;m ksm out dt psm sm” " sm,out ¢ ¢
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where @y (= Vo /7R Tk ) Gns (= T/ T )



Eung-Seok Kim

are known parameters. The supply manifold pressure p,,
and the mass flow rate of compressor 7, (: k,,® a)cp) are

also known variables measured via those sensors. However,
their derivatives may not be known directly. To solve this
problem, we use the cascade observer proposed in [2].

Using the cascade observer [2], we can estimate the
derivative of the supply manifold pressure p,, and also
design the open loop observer for the cathode pressure
P, as follows :

~ dp sm
aca L1 dt

ca

+ psm - aca,2Vch

(11)

Defining the observation error as P, = Do, — Doy s WE
obtain the equation as follows :

. ap.,,
P al” g (12)

As shown in the above, the observation error may not
converge to zero, even though the cascade observer [2]
guarantees an asymptotic stability. Since the open-loop
observer dose not guarantees the asymptotic stability, we
construct the cathode pressure model as follows :

(13)

where ‘s’ denotes the Laplace transform. Using the Eq.
(10), we obtain the cathode pressure observer model as
follows [7, 8]:

dpf,ca
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dpSWl
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w

ca,2”" cp

Hy + Do~ (14)

And we can design the sliding mode observer for the
cathode pressure model (14) as follows [7, 8]:

Hy % = _ﬁj',ca +a.,, % t Py~ Vqu (15)
Ay iy~ BE(Pr o)
1, z>0
£(z)=4z2/6,62z2-6 (16)
-1, =-0>z

where S(>0) and &(>0) are design parameters.
Defining the observation errors as p fea = p rea " Preas WE
obtain the error equation as follows :
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Defining the Lyapunov function candidate as

Hy o

X p f,caz , the residual error set is as follows [7, [8] :
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As shown in the above, we can recognize that the
sufficiently small ,Uf,5 and reasonably large 5.l cq
guarantee the smaller error bounds. As the time increasing,

we can also show that |]5f,m —pﬂm|=0(ﬂf), Dica =
Pre andalso p,., —0.

3.2 Anode pressure observer

The anode pressure model is as follows [7, 8] :
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RHZ Tsm,anksm,an,out dt (20)
—a dp sm,an
— %an, sm,an
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The anode pressure observer model is as follows [7, 8] :

dpf,an
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psm,an

;uf = _pf,an +aan,1 (21)

p sm,an

Defining the observation errors as Dy =Py = P.an
and Dy, = Pan — Pan » We can design the sliding mode
observer for the anode pressure model (21) as follows :
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where B(>0) and 5(>0) are design parameters, and
& ( [7‘,-’”") is the same as (16). Using the above observer
(22) for the observer model (21), we obtain the error
equation as follows :

dﬁf an ~ dﬁ m,an ~
/u_/' J = _(1 + l_/',an )p_/',an + aan,l Sdt’ - ﬂg(p/',an )
(23)
Defining the Lyapunov function candidate as V,, =
Lol p, .7, the residual error set is as follows [7, 8]:
2 f.an
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recognize sufficiently small

bounds. As the time increasing [P/, — P/

Praw = Pra andalsop,,, —0.

3.3 Nonlinear oxygen pressure observer

Deﬁning x()T = ['x3 x4 xs] = I:p()z pNz pv,ca:| > and

u” =[P, I,,], we rewrite the egs. (3-5) as follows :

X, = Ax,+Bu+d, 25)
»n=0Cx,

Where le = [a38prm a48prm a555f(pv,an )pv,an + a58prm] H
A4 eR¥, BeR¥® and C=[l 1 1]. We design the
observer for the above model as follows :

Xo = AX, +Bu+d +&+K (5, —y) 26)
J>1:C)20

where K is the observer gain matrix, & = ,C” 5()71),
=5 -» and £(3,) is the same as (16). Defining the
observation error X, =X,—X, , we obtain the error
equation as follows :

);Co =A4.X,+ dl + 51 27)
J~’1 = C;Co

where 4. =4, +KC . We can assume that||d1|| is bounded
and its upper bound 4, (> |l ||) is known. Defining
Pmin> Pmax are the minimum and the maximum

eigenvalue of the matrix P, we get the following
conclusions.

Theorem 1 If  there exist P(: Pl > 0) and
Q(= o > 0) satisfying PA, + A P=-Q and 3p..
< |P%o|| €3 P

system (25) guarantees the asymptotic stability of the
observation error system (27), and the observation errors
in (27) decay to zero exponentially fast.

3
)71|, then the observer in (26) for the

894

Proof : Defining the positive definite function V,, =

%, P %, , its 1* time derivative is as follows :

Vm < _;COTQ;CO +64, Pnas

ﬂl pmin
1)

1

#|-6 e
where f (> 0) and 51(> 0) are the design parameters
satisfying the inequality f/0| > PmaxAd / Pmin - Using
this inequality, we can rewrite the Eq. (28) as follows :

ﬁ _ ﬂ’d Prnax
é‘l pmin

<

A n
leax

(29)

Vm < _ioTQio —6Dn {

Therefore V,,, V,, are exponentially stable, and %,

550, ¥, decay to zero exponentially fast.

3.4 Nonlinear hydrogen pressure observer

T

Definin xHT = [)C7 xs] = [sz pv,an:l s and U,
[ Poman L |, We rewrite the Egs. (7, 8) as follows :

Xy =A,x, +Bu, +d,

(30)
»=Cxy

Where 4, € R*>, B, eR> and_ C,=[1 1], 4, =
a6,345pca a777f(pv,ca )pv,ca + a7,345 pca We deSign the
observer for the above model as follows :

;CH :A2£H+B2”2+GA’2+§2+K2 (ﬁz_yz) 31)
¥, =C.%y

where K, is the observer gain matrix, & = f3,C,"¢ (7,),

Y, =V,—y, and 5()72) is the same as (16). Defining

the observation error ¥, =X, —X,, we obtain the error

equation as follows :

X, =A,%, +d, +¢,

32

¥, =Xy 32

where 4., = A4, +K,C,. We can assume_ that ||d2|| is
bounded and its upper bound /1‘12(5> "dz”) is known.

Defining Puin> Pmax are the minimum and the maximum
eigenvalue of the matrix P, we get the following
conclusions.

Theorem 2 If there exist P(: prs ()) and
Q(= o' > 0) satisfying PA,+ALP=-Q and
3Puin )72| < "P)Ez” <3P )72|, then the observer in (31) for

the system (30) guarantees the asymptotic stability of the
observation error system (32), and the observation errors
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in (32) decay to zero exponentially fast.

Proof : Defining the positive definite function V,;, =
%, P %, ,its 1* time derivative is as follows :

Vs <% OF, + 64, P |72 - 6% 7|
2

(33)

where S, (> 0) and O 2(> 0) are the design parameters
satisfying the inequality 5, /5 > PmaxAd2 ! Pmin -

{&_ ﬂ’dzpmax }
52 pmin
v .

Therefore V,,, V,, are exponentially stable,
Xy, X,, ¥, decay to zero exponentially fast.

<

VHI < _)NCHTQ)NCH - 6pmin =

ﬁ’an
_i_' VHl (34)

P

‘max

and

3.5 Oxygen pressure state feedback controller

For the system (25), we choose the reference model [3]
as follows:

xX,,=4

mO mO

+B

X mO r()

mo (35)
Where 4,,€R™ is asymptotically stable, B,, € R*
is input matrix. We choose the control input as follows :

u=0,%,+ Qo*ro +z (36)
where O, € R consists of adjustable parameters and
0, € R* such that

Bl Q() ’

We assume that a constant matrix © , exists such that
4 +B0O, =4, (38)

Substituting (36) into (25), we obtain the error equation
as follows :

é, =4,e,+d +Bz (39)
where e, =X, —x,,and z, is as follows :
z,=-f¢(e,)
1 , ¢,>0
¢(e)= : )
-1 , e,<0
where ,31(> 0) is design parameter. Defining V,, =

T . . . .
e, Pe,, itsderivative is as follows :
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Vo, <—e, Qe, +|Pd,||e,|| - | PB.d. (41)

o "

d,

, and A;0P+PAmO

where ||Pd,|<|PBd_|, |z]<

Voz < _eoTQeo (42)

Therefore V,,, V,, are exponentially stable, and
e,, €, decay to zero exponentially fast. However, e,, €,
go to zero, e,(=x,-x,,) does not go to zero
exponentially fast. Adding (x, —x,) into e,(=%,—x,,
e,o +X,), we can rewrite the Eq.(42) as follows :

; T ~T Ay T e T
Vor £ —€,00e,, =%, 0%, +e,,0%, +X,0e,,

2 ~ |12 ~
- _/Iqmin em() | _/Iqmin ‘x() " +2}’qmax em() |||x0||
5 (g (43)
gmax || ~ g max ~ 12
- ﬂ’qmin €,0 | - 2 xO” + T - lqmin |x0 "
g min g min

where /Iqmin is the minimum eigenvalue of matrix 0,
and /Iqmax is the maximum eigenvalue of it. Since ||5€0||
decays to zero exponentially fast, we can prove the
following inequality :

Yoo ol <[esol| < 70220 %] (44)

where 4, = {\/(ﬂqm - 1)

Yo and ¥y, are positive constants. Therefore we can show

/2

‘g min

+1)(24

g max

/ //l’q min g max

+4 /Aqmm} ,

that the state feedback error e,,(=x, —Xx,,) decreases to

zero asymptotically as ||i0|| converges to zero

exponentially.

3.6 Hydrogen pressure state feedback controller

For the system (30), we choose the reference model [3]
as follows :

me = AmemH + BmH rH (45)
Where 4, € R** is asymptotically stable, B,, € R>>
is input matrix. We choose the control input as follows :

u, =0,%, +0,r, +2, (46)

where ©,, € R”* consists of adjustable parameters and
0, € R”® such that

B0, 47

B mH

We assume that a constant matrix ©, exists such that
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4,+B,0, =4, (48)

Substituting (48) into (30), we obtain the error equation
as follows :

ey =A,yey +d, +B,z, (49)
where e, =X, —x,,,,and z, is as follows :
Z = _18262(611 )
l,e,>0
(50)
&ley)=
—-1l,e, <0

where S, (>0) is design parameter. Defining 7, =
e, B,,e, , its derivative is as follows :

VHZ < _eHTQHZeH +||PH2d2 "”eH ||_||PH2B2d22 "eH " (51)
where [Py, <[[By,B.dL, "ZZH S|l and A4, P, +
PorAy =0y, .

VHZ < _eHTQHZeH (52)

Therefore V,,, V,, are exponentially stable, and

ey, €, decay to zero exponentially fast. As the result, we
can show that the system error converges to zero
exponentially fast. However, e, ¢, go to zero,
e, (=x; —x,,) does not goes to zero exponentially fast.
Adding (x, —x,) into ey(=e,,; +X;), we can rewrite

the eq.(52) as follows :

Y T ~T ~ T ~ ~T
VHZ < _emHQHzemH _xHQHsz + emHQHsz +xHQHzemH

2 ~ 12 ~
<- ﬂ’qH min emH | - ﬂ’qH min 'x()" + 2ﬂ’qH max emH |||xH|
2
A A
qH max || ~ ‘qH max ~
<- ﬂ’qH min emH | - xH || + ﬂ, - ﬂ’qH min |xH ||
gH min ‘qH min

(53)

where ﬂqH min 1S the minimum eigenvalue of matrix O, ,
and ﬁquax is the maximum eigenvalue of it. Since ||)?H ||
decays to zero exponentially fast, we can prove the
following inequality :

Yinte ”iH " < "emH " <Vur o ”iH " (54)
where: =R 2y ) Ao Ay =)+t By

Yy and yp, are positive constants. Therefore we can

show that the state feedback error e, (=X, —x,,)

896

decreases to zero asymptotically as ||)~CH || converges to

zero exponentially.

4. Conclusion

In this paper, the sliding mode observer was designed to
estimate the cathode and anode pressures of PEMFC
system. A observer based nonlinear state feedback
controller was designed to regulate the system states such
as supply manifold pressure, O, pressure, H, pressure,
return manifold pressure, etc. Exponential stability of the
system was achieved for the nonlinear PEMFC system.
Research is ongoing to address robustness issues for the
proposed observer and controller in the presence of
bounded disturbances and uncertainties.
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