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Observer Based Nonlinear State Feedback Control  

of PEM Fuel Cell Systems 
 

 

Eung-Seok Kim
† 
 

 

Abstract – In this paper, the observer based nonlinear state feedback controller has been developed to 
control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel 

cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems 

of the state observer and model based controller. A cascade observer using the filtering technique was 

used to estimate the pressure derivatives of the cathode and the anode in the system. In order to 

estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using 

these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, 

the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. 

These results will be very useful to design the state feedback controller. The validity of the proposed 

observers and the controller has been investigated by using the Lyapunov’s stability analysis strategy. 
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1. Introduction 
 
Fuel cell systems are under intensive development for 

mobile and stationary power applications. In particular, 

PEM fuel cells are currently in a relatively more mature 

stage for ground vehicle and stationary power applications 

[1, 5]. Despite a large number of studies on fuel cell 

modeling, relatively few are suitable for control and 

observation studies. The transient phenomena captured in 

the model include the flow and inertia dynamics of the 

compressor, the manifold filling dynamics (both anode and 

cathode), and membrane humidity. These variables affect 

the fuel cell stack voltage, and thus fuel cell efficiency and 

power [1, 5]. A two-dimensional along-the-channel mass 

and heat transfer model for a PEMFC(Proton Exchange 

Membrane Fuel Cell) is described in [1]. This model is 

used for calculation of cell performance (i.e., cell voltage 

against current density), ohmic resistance and water profile 

in the membrane, current distribution and variation of 

temperature along the gas channel. This model is useful for 

the analysis of cell performance. In [6], an adaptive 

nonlinear observer was designed to estimate the partial 

pressure of hydrogen in the anode channel of a fuel cell. 

By treating the slowly varying inlet partial pressure as an 

unknown parameter, an adaptive observer was developed 

that employs a nonlinear voltage injection term. However, 

this study does not treat an overall system dynamics of 

PEMFC.  

In this paper, a nonlinear fuel cell system model suitable 

for designing the controller and the observer is introduced 

to estimate the transient response and also the steady state 

response. A cascade observer [2] with filtering technique is 

designed to estimate the pressures of the cathode and the 

anode. The oxygen pressure in the cathode and the 

hydrogen pressure in the anode will be estimate by using 

nonlinear feedback observer. The validity of the proposed 

observers will be investigated by using a Lyapunov’s 

stability analysis method. Nonlinear state feedback controller 

will be designed to regulate each pressure. 

 

 

2. System Dynamics of PEMFC 

 

The system studied in this paper is shown in Fig. 1. It is 

assumed that the cathode and anode volumes of the 

multiple fuel cells are lumped as a single stack cathode and 

anode volumes. 

 

2.1 Cathode pressure model 
 
This model includes the air compressor dynamics, the 

supply manifold dynamics and the cathode dynamics. The 

cathode dynamics is developed using the mass 

conservation principle and the thermodynamic and 

psychrometric properties of air [4, 7, 8]. 
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Fig. 1. Simplified fuel cell reactant supply system. 

2.2 Anode pressure model 
 
This model is quite similar to the cathode pressure 

model. In this model, it is assumed that pure hydrogen gas 

is supplied to the anode from a hydrogen tank [4, 7, 8]. 
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3. Observer based controller design 

 

The cathode and anode pressures influence the voltage 

generated in fuel cell stack. Those also affect the efficiency 

and the power of the fuel cell. However, it is difficult to 

directly measure these variables [1]. This problem can be 

solved using a nonlinear observer. The observation of those 

variables is needed to design of the suitable controller. The 

filtered supply manifold pressure is used to design the 

sliding mode observer for the cathode and anode pressures. 

The nonlinear state observer for Oxygen and air pressures 

in the cathode is designed using the estimated cathode 

pressure. The estimates of the anode pressures are similar 

to the cathode it. 

 

3.1 Cathode pressure observer 

 

In order to estimate the cathode pressure, we rewrite the 

eq. (2) as follows: 
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are known parameters. The supply manifold pressure sm
p  

and the mass flow rate of compressor ( )cp cp cpW k ω= Φ  are 

also known variables measured via those sensors. However, 

their derivatives may not be known directly. To solve this 

problem, we use the cascade observer proposed in [2]. 

Using the cascade observer [2], we can estimate the 

derivative of the supply manifold pressure sm
p  and also 

design the open loop observer for the cathode pressure 

ca
p as follows : 
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ˆ
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Defining the observation error as ˆ
ca ca ca
p p p= −% , we 

obtain the equation as follows : 
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As shown in the above, the observation error may not 

converge to zero, even though the cascade observer [2] 

guarantees an asymptotic stability. Since the open-loop 

observer dose not guarantees the asymptotic stability, we 

construct the cathode pressure model as follows :  
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where ‘s’ denotes the Laplace transform. Using the Eq. 

(10), we obtain the cathode pressure observer model as 

follows [7, 8]: 
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And we can design the sliding mode observer for the 

cathode pressure model (14) as follows [7, 8]: 
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where ( )0β >  and ( )0δ >  are design parameters. 

Defining the observation errors as , , ,
ˆ

f ca f ca f ca
p p p= −% , we 

obtain the error equation as follows : 
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Defining the Lyapunov function candidate as ca
V =  

2

,
2

f

f cap
µ

% , the residual error set is as follows [7, [8] : 
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As shown in the above, we can recognize that the 

sufficiently small δµ ,f  and reasonably large cafl ,,β  

guarantee the smaller error bounds. As the time increasing, 

we can also show that ( ), ,
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f ca f ca fp p o µ− = , ,
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3.2 Anode pressure observer 

 

The anode pressure model is as follows [7, 8] : 
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The anode pressure observer model is as follows [7, 8] : 
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Defining the observation errors as , , ,
ˆ

f an f an f anp p p= −%  

and ananan ppp −= ˆ~
, we can design the sliding mode 

observer for the anode pressure model (21) as follows : 
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where ( )0>β  and ( )0>δ  are design parameters, and 

( ),f anpξ %  is the same as (16). Using the above observer 

(22) for the observer model (21), we obtain the error 

equation as follows : 
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Defining the Lyapunov function candidate as an
V =  

2

,
2

f

f anp
µ

% , the residual error set is as follows [7, 8]: 
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where , ,sm an sm anpγ
∞

= &% . As shown in the above, we can 

recognize that the sufficiently small δµ ,f  and 

reasonably large cafl ,,β  guarantee the smaller error 

bounds. As the time increasing ( ), ,
ˆ
f an f an fp p o µ− = , 

, ,
ˆ
f an f an
p p→  and also , 0f anp →&% . 

 

3.3 Nonlinear oxygen pressure observer 
 

Defining [ ]
2 23 4 5 ,

T

O O N v cax x x x p p p = =   , and 

Tu = [ ]sm st
p I , we rewrite the eqs. (3-5) as follows : 
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observer for the above model as follows :  
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where K is the observer gain matrix, ( )111

~yCTξβξ = , 

111
ˆ~ yyy −=  and ( )1~yξ  is the same as (16). Defining the 

observation error ˆ
O O Ox x x= −% , we obtain the error 

equation as follows : 
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where KCAAc += 1 . We can assume that 1d is bounded 

and its upper bound ( )1dd >λ is known. Defining 

maxmin , p  p  are the minimum and the maximum 

eigenvalue of the matrix P , we get the following 

conclusions. 

 

Theorem 1 : If there exist ( )0>= TPP  and 

( )0TQ Q= >  satisfying QPAPA T
cc −=+  and min 1

3p y%  

≤ max 13OPx p y≤% % , then the observer in (26) for the 

system (25) guarantees the asymptotic stability of the 

observation error system (27), and the observation errors 

in (27) decay to zero exponentially fast. 
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where ( )01 >β  and ( )01 >δ  are the design parameters 

satisfying the inequality minmax11 // pp dλδβ > . Using 

this inequality, we can rewrite the Eq. (28) as follows :  
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Therefore 1 1,   O OV V&  are exponentially stable, and ,Ox%  

1 ,   Ox y&% %  decay to zero exponentially fast. 

 

3.4 Nonlinear hydrogen pressure observer 
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T
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,sm an stp I   , we rewrite the Eqs. (7, 8) as follows : 
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where 2K  is the observer gain matrix, ( )2 2 2 2

TC yξ β ξ= % , 

222
ˆ~ yyy −=  and ( )2yξ %  is the same as (16). Defining 

the observation error ˆ
H H Hx x x= −% , we obtain the error 

equation as follows : 
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where 2222 CKAAc += . We can assume that 2d  is 

bounded and its upper bound ( )22 dd >λ   is known. 

Defining maxmin , p  p  are the minimum and the maximum 

eigenvalue of the matrix P , we get the following 

conclusions. 
 

Theorem 2 : If there exist ( )0>= TPP   and 

( )0TQ Q= >  satisfying QPAPA T
cc −=+ 22 and 

min 23p y% 2 max 23Px p y≤ ≤% % , then the observer in (31) for 

the system (30) guarantees the asymptotic stability of the 

observation error system (32), and the observation errors 



Eung-Seok Kim 

 895 

in (32) decay to zero exponentially fast. 

 

Proof : Defining the positive definite function 1HV =  
 T

H Hx P x% % , its 1st time derivative is as follows : 
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Therefore 1 1
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H H
V V&  are exponentially stable, and 

2,   ,   H Hx x y&% % %  decay to zero exponentially fast. 

 

3.5 Oxygen pressure state feedback controller 

 

For the system (25), we choose the reference model [3] 

as follows: 
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where ( )1
0β >  is design parameter.  Defining  2OV =  
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where minqλ  is the minimum eigenvalue of matrix Q , 

and maxqλ  is the maximum eigenvalue of it. Since O
x%  

decays to zero exponentially fast, we can prove the 

following inequality : 
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where ( )( ){ }max min max min max min/ 1 / 1 /qO q q q q q qλ λ λ λ λ λ λ= + − + , 

1Oγ  and 2Oγ  are positive constants. Therefore we can show 

that the state feedback error ( )mO O mOe x x= − decreases to 

zero asymptotically as O
x%  converges to zero 

exponentially. 

 

3.6 Hydrogen pressure state feedback controller 

 

For the system (30), we choose the reference model [3] 

as follows : 
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2 2

mHA R ×∈  is asymptotically stable, mHB ∈ 2 2R ×  

is input matrix. We choose the control input as follows : 

 

 
*

2 2
ˆ

H H H Hu x Q r z= Θ + +       (46) 

 

where 
2 2

H R ×Θ ∈ consists of adjustable parameters and 
* 2 2

HQ R ×∈  such that 

 

 
*

2 H mHB Q B=   (47) 

 
We assume that a constant matrix HΘ  exists such that 



Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems 

 896 

 2 2 H mHA B A+ Θ =  (48) 

 

Substituting (48) into (30), we obtain the error equation 

as follows : 
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can show that the system error converges to zero 

exponentially fast. However, ,H He e& go to zero, 

( )mH H mHe x x= − does not goes to zero exponentially fast. 

Adding ( )H Hx x−  into ( )H mH He e x= + % , we can rewrite 

the eq.(52) as follows : 

 

2 2 2 2 2

2 2

min min max

2
2

2max max

min min

min min

2

T T T T

H mH H mH H H H mH H H H H mH

qH mH qH O qH mH H

qH qH

qH mH H qH H

qH qH

V e Q e x Q x e Q x x Q e

e x e x

e x x

λ λ λ

λ λ
λ λ

λ λ

≤ − − + +

≤ − − +

     
≤ − − + −   

      

& % % % %

% %

% %

 

  (53) 

 

where minqHλ  is the minimum eigenvalue of matrix 2HQ , 

and maxqHλ  is the maximum eigenvalue of it. Since H
x%  

decays to zero exponentially fast, we can prove the 

following inequality : 

 

 1 2H qH H mH H qH Hx e xγ λ γ λ≤ ≤% %       (54) 

 

where ( )( ){ }max min max min max min/ 1 / 1 /qH qH qH qH qH qH qHλ λ λ λ λ λ λ= + − + , 

1Hγ  and 2Hγ  are positive constants. Therefore we can 

show that the state feedback error ( )mH H mHe x x= −  

decreases to zero asymptotically as Hx%  converges to 

zero exponentially. 

 

 

4. Conclusion 

 

In this paper, the sliding mode observer was designed to 

estimate the cathode and anode pressures of PEMFC 

system. A observer based nonlinear state feedback 

controller was designed to regulate the system states such 

as supply manifold pressure, O2 pressure, H2 pressure, 

return manifold pressure, etc. Exponential stability of the 

system was achieved for the nonlinear PEMFC system. 

Research is ongoing to address robustness issues for the 

proposed observer and controller in the presence of 

bounded disturbances and uncertainties. 
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