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ABSTRACT

In this note, a separation principle of the Takagi-Sugeno (T-S) fuzzy-model-based controller/observer is investigated.
The separation principle of T-S fuzzy-model-based controller /observer sharing the premise parts in the fuzzy rule with
directly measurable premise variables is well established. In that case, the fact that the augmented observer-based
control system has the eigenvalues of the sub-closed-loop control system by the state-feedback controller and the sub-
closed-loop observer error system is used to prove the separation principle. This paper studies the separation principle
of T-S fuzzy-model-based controller /observer in which the premise variables cannot be directly measurable.

1. Introduction

The Takagi-Sugeno (T-S) fuzzy-model-based control
technology can be yet another promising resolution for
the output-tracking problem in that: i) it originally aims
at controlling plants that are mathematically ill-defined,
uncertain, and nonlinear [4]; ii) it bridges the gap be-
tween the domain expert’s knowledge and the fruitful lin-
ear control theories; iii) only simple computation is need-
ful without any complicated adaptive scheme. Plentiful
works related to the fuzzy-model-based state-feedback
control have been published [4-8,11,12]. However, rel-
atively few contributions to the output-feedback control
problem seem to be tractable [2,3,9,10].

In practical applications, it is often that all state
variables are not fully measurable, while the premise
variables are mapped from the state variables. Usu-
ally, in the fuzzy-model-based control strategy, the plant
rule and the controller rule share the premise parts
of the fuzzy rule base. The separation principle of
T-S fuzzy-model-based controller/observer sharing the
premise parts in the fuzzy rule with directly measurable
premise variables is well established [2,3,10]. In that
case, similarly to the linear controller/observer system
case, the fact that the augmented observer-based con-
trol system has the eigenvalues of the sub-closed-loop
control system by the state-feedback controller and the
sub-closed-loop observer error system is used to prove
the separation principle.

In practical applications such that all state variables
are not fully measurable, while the the premise vari-
ables are mapped from the unmeasurable state variables,
the controller/observer problem becomes more difficult.
Such a problem is studied in [3]. However, the separation
principle is not explored. Motivated by the observations,
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a separation principle of the T-S fuzzy-model-based con-
troller/observer is investigated with partially unmeasur-
able premise variables.

The following section briefly reviews observer-based T-
S fuzzy-model-based control systems. In Section 3, the
separation principle of observer-based T-S fuzzy-model-
based control systems with measurable premise variables
is discussed. Section 4 is devoted to show the main
results: the separation principle of observer-based T-S.
fuzzy-model-based control systems with unmeasurable
premise variables. In Section 4 the paper is closed.

2. Observer-Based T-S Fuzzy-Model-Based
Control Systems

Many physical systems are very complex in practice
and have strong nonlinearities and uncertainties so that
rigorous mathematical models can be difficult, if not im-
possible, to obtain. Fortunately, certain class of nonlin-
ear dynamical systems can be expressed in some forms of
a linear mathematical model locally, or as an aggregation
of a set of linear mathematical models.

Consider a nonlinear dynamical system of the follow-
ing form:

1)

where z(t) € R™ is the state vector; u(t) € R™ is the
control input vector; y(t) € R? is the output vector. The
vector field, f : U, x U, CR*"xR™ - V, C R" is
assumed to be affine in u(t), f(0,0) = 0, and piecewise
C",r 2 1, and the output mapping h : U; CR* — V,, C
RP is assumed to be y(0) = 0.



One way to view a T-S fuzzy system is that it performs
nonlinearly interpolated linear mappings ¢, (z(t), u(t)) :
Uz x Uy = V; and 1, (x(t)) : Uy — Vj, so as to satisfy

sup

1 (@), u(t)) — Yz(z(t), u@)] <6
(2(8) u(t))€Vax U

sup  [lh(z(t)) — ¥y (z(t))]| < n
z(t)eU,

where d¢ and §,, are arbitrary small positive scalars.
Assume there exist L triplets v; = (4;, B;,C;) which

represent the local dynamic behavior of (1) , such that
the matrix polytope
P = CO{[Ala B17 Cl]a ey [ALa BL7 CL]}

contains the domain U, x U, x U, and the range
Vz x V,, where Co denotes a convex hull of the set

= {v1,...,vr}, and A; € R"** B; € R"*™, and
C; € RP*™ Thus, one can find an adequate mapping at
time instant ¢ with §; and d, of the form:

Yo ((t), u(t)) = A(0)z(t) + B(O)u(t)
by(z(t)) = C(0)=(t)

where A(#) ranges over a matrix polytope
3 AL}

and B(¢) € Co{B;,...,BL}, C(6) € Co{Cy,...,CL}
with 327, 6; =1,6; € Rygqp,i € T, = {1,2,...,L}. The
key feature of the T-S fuzzy inference system is to de-
termine the coeflicients &; by virtue of the qualitative
knowledge available from domain experts that is quanti-
fied by ‘IF-THEN’ rule base. More precisely, the ith rule
of the T-S fuzzy system is formulated in the following
form:

A(6) € Co{A,,. ..

RCGIF n (t) is about Fi and --- and z,(t) is about I’f1
i(t) = Aia(t) + Biu(t)

THEN 2

y(t) = Cialt) @

where z(t) € R" is the state vector; u(t) € R™ is the
control input vector; R* denotes the ith fuzzy inference
rule; 2;(t) is the premise variable, T'%,i € Iy, h € Iy is
the fuzzy set of the hth premise variable in the ith fuzzy
inference rule. Using the center-average defuzzification,
product inference, and singleton fuzzifier, the global dy-
namics of this T-S fuzzy system (2) is described by

x(t) + Biu(t))

{I

0;(2(t))Cix(t

i

in which w;(2(t))
w; (2(t))
T wiz(t) )
the hth premise variable z,(t) in '} .

h Th(za(0). 6,(2(1)
and I (zp(t)) is the membership value of
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In control problems, the full system state vector is of-
ten unknown and only some functions of state variables,
called system outputs, can be measured. One way to es-
timate the full state vector is to build an observer, for
example, taking the following form:

R':IF 21(t) isT% and --- and 2,(t) is T'%,
ey 50 = AF() + Brult) + Lily(0) - 7(2)
y(t) = Cix(t)

The defuzzified output of the observer rules is repre-
sented by

z(t) = 2(1)) (A:Z(t) + Bau(t) + Li(y(t) — 5(t)))

(tHCiz(¢)

The controller rule is of the following form:

R':IF 2z (t) is % and ---

THEN u(t) = K'Z(t)

and z,(t) is ',

The defuzzified output of the controller rules is given by

L

u(t) =Y 0:(2(t)) K'(2)

i=1

(5)

3. Observer-Based T-S Fuzzy-Model-Based
Control: Measurable Premise Variable

In this section, we assume that there exists a mapping
from y to z. Let the estimation error e(t) = x(t) — Z(t),
then we obtain the augmented continuous-time closed-
loop T-S fuzzy system is

X(t):ié 0:(2(t))6;(2(1))Pi; x(t) (6)
where
&y, = [A,» +OB,-Kj A,-—filfé' j
for the pair (i, j) € Z, x Iy, where x(t) = [z(t)T, e(t)T]".

Theorem 1 Suppose (3) is globally ezponentially ob-
servable and globally exponentially controllable with
u(t) = YL, 6,(2(t))Kiz(t). Then the observer-based
output-feedback fuzzy-model-based control (5) with (4)
globally exponentially stabilizes (3) at the zero equilib-
rium.
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proof: From the controllability we can assign all eigen-
values of A; — B;K; such that the values of their real
part is negative. From the observability we can make
A; — L;C; to be Hurwitz. Since the eigenvalues of &;;
are those of A; — B;K; and A; — L;Cj;, the augmented
closed-loop system (6) is exponentially stable. [ |

Remark 1 From the fact that the eigenvalues of ®;; are
those of A; — B;K; and A; — L;C}, it is easily seen that
the fuzzy-model-based controller (5) and the fuzzy-model-
based observer (4) can be designed separately.

4. Observer-Based T-S Fuzzy-Model-Based
Control: Unmeasurable Premise Variable

In this section, we study the case that there exists some
unmeasurable premise variable: they should be obtained
from the estimated state. Then we have the following
plant, observer, and controller dynamics.

)(Asz(t) + Buu(t))

ﬂo_zy@

(7)
y(t) = Zez-(z(t))c,-z(t)
i=1
L
B(t) = Y 0:(Zt)(A:Z(t) + Bau(t) + Li(y(t) — §(¢)))
i=1
Xp (Z(t)CiZ(t)
(8)
Q-E:B () K'E(t) (9)

Remark 2 [t is noted that the firing strength is function
of Z(t) mapped from Z(t), not from z(t).

The closed-loop system is constructed as follows:

x(t) = Z 20 (2(1))0; (z

i=1 j=1

Ai + B; K}, —B;Kp
A, —A

| +(8.- B)K Ay~ L;Ch
(+Lj (Ch - Ci’)l (_(Bi B

x(t)
Bjj)Kh)
L L
= Z D 0:(2(2))0; (Z(1))0n (3(2))

()0n(2(t))

A+ BiKy —BiK,
“1 0 4 —chh] x(®)
[ 0 0
A - A,
t
T B - Bk | —(Bi - By, | XD
+L;(Cr — Ci)

(10)

Theorem 2 Suppose (3) is exponentially ob-
servable and ezponentially stabilizable with
u(t) = Zf’ 10i(2(t))Kiz(t).  Further assume that

their decay mtes are sufficiently fast. Then the observer-
based output-feedback fuzzy-model-based control (9) with
(8) exponentially stabilizes (3) at the zero equilibrium.

proof: Since the closed-loop system (3) fed by u(t) =
ZiLzl 0:(2(t))K;z(t) back is exponentially stable, it fol-
lows from the converse Lyapunov theorem that there ex-
ists a Lyapunov function Vi(z(t)) satisfying the condi-
tions

w1 llzll < Vi(@(®)) < k2 |
o]
.’E
L
a”(zzez ()04 (3(0)) (4; + BiK;)z ()) s o]’
i=1 h=1

On the other hand, from the observability assumption
we know matrix C; can be arbitrary assigned such that
A; — L;C; is Hurwitz for all (4,5) € I x Ir. Therefore,
there exist a Lyapunov function V5(e(¢)) such that

a llell < Va(e(?)) <
|5 <

g2 lell

s3 el
(L x e

j=1h=1

)0 (Z())(A; + L;Ch)a(t )) < —a el

To prove x(t) = [0)2nx1 is a stable equilibrium point

of (10), we choose a Lyapunov function in the form -
V(a(t),e(t)) — AVi(o(t)) + Va(e(t)), where A € Ryg,o0)

is a constant to be determined [1]. The time derivative

of V(z(t), e(t)) along the trajectory of (10) is computed

by

Voo oaThde , OVide
"Naoy T 8z dt e dt (10)
R
L L
#3073 0B el e
—<4||6||

L L .
+ 5 ZZoz (2(1))0;(2())6n (3())
1j=1h=1

=

X (AZ - Aj + (Bi — B]-)Kh + Lj(Ch - CZ))”

x |zl flel
L L L

+63 ZZZ i(2(1))6; (2(2))0n (2(2))
i=1 7=1h=1

x ((Bi — B;)Kn)| llell® (11)




Let
L L

vy = sup ZZ 91 t))eh t))B Kh
z:[‘l h:zl .

vy = sup ZZZ (2(1))8;(2())0n(2(2))
i=1 j=1h=1

x
ES
I

A+ (B — Bj)Ky + Li{Cr — Cz‘))u

L L L
vy = sup |75 37 0:(a(t))6; (2())0n B ((B: — B;)Ka)

o

i=13j=1h=

Then (11) becomes

V(). e®)] < ~Mallzl® + (nava + sava) 2l el

+ (cavs — <) el (12)

Completing the square in the two variables ||z| and |lel],
(12) is negative definite if and only if

(A + S312)?

13
40Ky (13)

+sv3 -6 <0

Completing the square in A again and by the Sylbester’s
criterion, there exists some A guaranteeing (13) if and
only if

(V1253 + 2(sa — s3v3)Ka)? — Viuacs = 4((Sa — sava)Kj)

+ dv g3 (e — Sava kg

+ (r1vess)? — vivess
>0

which is equivalent to

4((4 — (31/3)/-64 -1 >0 (14)

which completes the proof. n

Remark 3 Condition (14) shows that sufficiently fast
convergent observer provides the separation principle of
the fuzzy-model-based controller/observer.

5. Conclusions

This note has discussed a separation principle of
the T-S fuzzy-model-based controller/observer is inves-
tigated. The separation principle of T-S fuzzy-model-
based controller/observer with unmeasurable premise
variable has been presented. The future research effort
will be devoted to the relaxation of the separating con-
troller/observer design condition.
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