• Title/Summary/Keyword: mixed-effects model

Search Result 493, Processing Time 0.026 seconds

Mixed-effects model by projections (사영에 의한 혼합효과모형)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1155-1163
    • /
    • 2016
  • This paper deals with an estimation procedure of variance components in a mixed effects model by projections. Projections are used to obtain sums of squares instead of using reductions in sums of squares due to fitting both the assumed model and sub-models in the fitting constants method. A projection matrix can be obtained for the residual model at each step by a stepwise procedure to test the hypotheses. A weighted least squares method is used for the estimation of fixed effects. Satterthwaite's approximation is done for the confidence intervals for variance components.

Testing Independence in Contingency Tables with Clustered Data (집락자료의 분할표에서 독립성검정)

  • 정광모;이현영
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.337-346
    • /
    • 2004
  • The Pearson chi-square goodness-of-fit test and the likelihood ratio tests are usually used for testing independence in two-way contingency tables under random sampling. But both of these tests may provide false results for the contingency table with clustered observations. In this case we consider the generalized linear mixed model which includes random effects of clustering in addition to the fixed effects of covariates. Both the heterogeneity between clusters and the dependency within a cluster can be explained via generalized linear mixed model. In this paper we introduce several types of generalized linear mixed model for testing independence in contingency tables with clustered observations. We also discuss the fitting of these models through a real dataset.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Modified partial least squares method implementing mixed-effect model

  • Kyunga Kim;Shin-Jae Lee;Soo-Heang Eo;HyungJun Cho;Jae Won Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • Contemporary biomedical data often involve an ill-posed problem owing to small sample size and large number of multi-collinear variables. Partial least squares (PLS) method could be a plausible alternative to an ill-conditioned ordinary least squares. However, in the case of a PLS model that includes a random-effect, how to deal with a random-effect or mixed effects remains a widely open question worth further investigation. In the present study, we propose a modified multivariate PLS method implementing mixed-effect model (PLSM). The advantage of PLSM is its versatility in handling serial longitudinal data or its ability for taking a randomeffect into account. We conduct simulations to investigate statistical properties of PLSM, and showcase its real clinical application to predict treatment outcome of esthetic surgical procedures of human faces. The proposed PLSM seemed to be particularly beneficial 1) when random-effect is conspicuous; 2) the number of predictors is relatively large compared to the sample size; 3) the multicollinearity is weak or moderate; and/or 4) the random error is considerable.

Effect of kurtosis on the Flow Factors Using Average Flow Model

  • Cho, Yong-Joo;Kim, Tae-Wan;Koo, Young-Pil
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • The roughness effects are very important due to the presence of interacting asperities in mixed lubrication regime. An average Reynolds equation using flow factors is useful to determine the effects of surface roughness on mixed lubrication. In this study, the effect of kurtosis on flow factors is investigated using random rough surfaces generated numerically, The results show that flow factors are very sensitive to h/$\sigma$ according to the value of kurtosis in the partial lubrication regime.

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Predicting soft tissue artefact with linear mixed models (선형혼합모형을 이용한 피부움직임 오차의 예측)

  • Kim, Jinuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.353-366
    • /
    • 2018
  • This study uses mixed-effects models to predict thigh soft tissue artefact (STA), relative movement of soft tissue such as skin to femur occurring during hip joint motions. The random effects in the model were defined as STA and the fixed effects in the model were considered as skeletal motion. Five male subjects without musculoskeletal disease were selected to perform various hip joint rotational motions. Linear mixed-effects models were applied to markers' position vectors acquired from non-invasive method, photogrammetry. Predicted random effects showed similar patterns of STA among subjects. Large magnitudes of STA appeared on the points near the hip joint regardless of sides; however, small values appeared on the distal anterior.

Sparse Matrix Computation in Mixed Effects Model (희소행렬 계산과 혼합모형의 추론)

  • Son, Won;Park, Yong-Tae;Kim, Yu Kyeong;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.281-288
    • /
    • 2015
  • In this paper, we study an approximate procedure to evaluate a penalized maximum likelihood estimator (MLE) for a mixed effects model. The procedure approximates the Hessian matrix of the penalized MLE with a structured sparse matrix or an arrowhead type matrix to speed its computation. In this paper, we numerically investigate the gain in computation time as well as approximation error from the considered approximation procedure.