Browse > Article
http://dx.doi.org/10.29220/CSAM.2018.25.1.061

Negative binomial loglinear mixed models with general random effects covariance matrix  

Sung, Youkyung (Department of Statistics, Sungkyunkwan University)
Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
Publication Information
Communications for Statistical Applications and Methods / v.25, no.1, 2018 , pp. 61-70 More about this Journal
Abstract
Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.
Keywords
overdispersion; ARMA Cholesky decomposition; positive-definite; longitudinal count data; high dimensionality;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Jowaheer V and Sutradhar BC (2002). Analysing longitudinal count data with overdispersion, Biometrika, 89, 389-399.   DOI
2 Judge GG, Griffiths WE, Hill RC, and Lee TC (1980). The Theory and Practice of Econometrics, Wiley, New York.
3 Lee K (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240.   DOI
4 Lee K, Baek C, and Daniels MJ (2017). ARMA Cholesky factor models for longitudinal regression models, Computational Statistics & Data Analysis, 115, 267-280.   DOI
5 Lee K, Lee J, Hagan J, and Yoo JK (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551.   DOI
6 Lee K and Sung S (2014). Autoregressive Cholesky factor model for marginalized random effects model, Communications for Statistical Applications and Methods, 21, 169-181.   DOI
7 Lee K and Yoo JK (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics and Data Analysis, 80, 111-116.
8 Molenberghs G and Verbeke G (2005). Models for Discrete Longitudinal Data, Springer, New York.
9 Molenberghs G, Verbeke G, and Demetrio CGB (2007). An extended random-effects approach to modeling repeated, overdispersed count data, Lifetime Data Analysis, 13 513-531.   DOI
10 Nam S and Lee K (2017). Comparison of the covariance matrix for general linear model, The Korean Journal of Applied Statistics, 30, 103-117.   DOI
11 Niederreiter H (1992). Random Number Generation and Quasi-Monte Carlo Methods, Siam, Philadelphia, Pennsylvania.
12 Pan J and MacKenzie G (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244.   DOI
13 Pan J and Thompson R (2007). Quasi-Monte Carlo estimation in generalized linear mixed models, Computational Statistics & Data Analysis, 51, 5765-5775.   DOI
14 Pourahmadi M (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690.   DOI
15 Pourahmadi M (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435.   DOI
16 Pourahmadi, M. (2011). Covariance estimation: The GLM and regularization perspectives, Statistical Science, 26, 369-387.   DOI
17 Wuertz D (2005). fOptions: Financial Software Collection-fOptions. R package version 220.10063. (http://www.rmetrics.org).
18 Zhang W and Leng C (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data, Biometrika, 99, 141-150.   DOI
19 Thall PF and Vail SC (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671.
20 Agresti A (2002). Categorical Data Analysis (2nd ed), Wiley and Sons, New York.
21 Booth JG, Casella G, Friedl H, and Hobert JP (2003). Negative binomial loglinear mixed models, Statistical Modelling, 3, 179-191.   DOI
22 Breslow NE and Clayton DG (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
23 Choi J and Lee K (2017). Poisson linear mixed models with ARMA random effects covariance matrix, Journal of the Korean Data & Information Science Society, 28, 659-668.
24 Diggle PJ, Heagerty P, Liang KY, and Zeger S (2002). Analysis of Longitudinal Data (2nd ed), Oxford University Press, Oxford.
25 Faught E, Wilder BJ, Ramsay RE, Reife RA, Kramer LD, Pledger GW, and Karim RM (1996). Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages, Neurology, 46, 1684-1690.   DOI
26 Han EJ and Lee K (2016). Dynamic linear mixed models with ARMA covariance matrix, Communications for Statistical Applications and Methods, 23, 575-585.   DOI