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Abstract
In medical or public health research, it is common to encounter clustered or longitudinal count data that

exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess
zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze
this type of data, zero-inflated count models with mixed effects have been developed where a count response
variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a
point mass of zeros that include random effects. However, no study has considered a situation where data are
also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted
version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times.
We suggested two different types of weight function. The performance of the proposed model is evaluated and
compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to
Medicaid data analysis.
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1. Introduction

Health care utilization data are often analyzed to address critical questions about health care service
and delivery, such as resource utilization and planning, allocation of services and the evaluation of
patient outcomes. Such analysis is of increasing importance for policy makers and health care insti-
tutions to improve the quality of patient care. Measurement of utilization includes the frequency of
visits to medical providers, visits to emergency department (ED), days spent in a hospital, and use of
prescription medication. Such count data are frequently found overdispersed with heavy tails and are
often multi-modal with excess zeroes. For example, few patients use a service multiple times, whereas
the majority report no utilization in a specific time period. Traditional approaches for overdispersed
count data with extra variation have been the use of zero-inflated models, that include zero-inflated
Poisson (ZIP) (Lambert, 1992) and zero-inflated negative binomial (ZINB) (Ridout et al., 1998).
These models were developed by assuming that the outcome variable contains a mixture of a point
mass at zero and a count distribution. For a comprehensive review of zero-inflated models, see Ridout
et al. (1998). However, a hurdle model (Mullahy, 1986) has been independently developed for count
data with excessive zeros assuming all zeros are from one structural source rather than two sources
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(both structural and sampling zeros) as assumed in the ZIP models. Thus, positive count data (non-
zero) are assumed as either truncated Poisson or truncated negative binomial distribution whereas
logistic regression part predicts all zeros in a hurdle model. The model choice between zero-inflated
and hurdle models of the distinction between structural and sampling zeros, may be subtle in practice
(Monod, 2014). In our application, we develop an approach based on a case in which structural zeros
cannot be distinguished from random zeros; therefore, we choose to focus on zero-inflated models.

Data on health care use often have a multilevel structure where patients are typically nested within
physicians, hospitals, and geographic regions. Consequently, intra-cluster correlation and heterogene-
ity between clusters must be considered. In such cases, random effects are commonly incorporated
into the zero-inflated model. Hall (2000) proposed ZIP with a random intercept to account for the
within-subject dependence in the Poisson state. Yao and Lee (2001) introduced a pair of uncorrelated
random effects to both zero and Poisson components. Min and Agresti (2005) suggested linking the
two components by the joint distribution of the random effects. Lee et al. (2006) and Moghimbeigi et
al. (2008) extended to a three-level hierarchical model using normally-distributed random effects.

In addition to a clustered structure, health care utilization data are often censored due to the finite
nature of the observation period or follow-up. For instance, when utilization data are collected in long-
term observational or randomized clinical trials, complete data are not available for some patients
because they are not followed until the endpoint of interest or they enter in the middle of the study.
Thus, patients with shorter follow-up should be treated differently from patients who have data for
the entire study period because the incidence rate of utilization would otherwise be underestimated.
Several authors have proposed modified zero-inflated models to handle variable follow-up (Emerson
et al., 1993; Hsu, 2005, 2007). They adapted a weight function for the simple fact that the likelihood
of observing a greater number of utilizations is higher for patients who are followed for longer periods
of time. However, no study has considered this in conjunction with multi-level data. This provided the
motivation to modify zero-inflated models with random effects by incorporating a variable follow-up
period.

In this paper, we present a weighted ZIP model with random effects for clustered count data with
excess zeros. The proposed model accounts for variable individual follow-up times using a weight
function that can be estimated by several approaches. We focus on Poisson models, but the methods
can easily be extended to other count distributions, such as the negative binomial.

The paper is organized as follows. In Section 2 we define the weighted ZIP mixed model. In
Section 3, we describe the estimation procedures. In Section 4 simulation studies are conducted to
show model performance. Section 5 applies the models to an analysis of Medicaid data. Discussion
and future research are provided in Section 6.

2. Weighted zero-inflated Poisson mixed model

We consider incorporating the duration of follow-up in ZIP mixed model through a weight function.
Let Yi j be the outcome and ti j be the follow-up time for the jth subject within the ith cluster (i =
1, 2, . . . ,m; j = 1, 2, . . . , ni). The probability of observing events is denoted as πi j = Pr(Yi j > 0) and
the total number of individuals n =

∑m
i=1 ni. The weight function, w(ti j), where 0 < w(ti j) ≤ 1, is

assumed to be an increasing function. w(ti j) = 1 indicates the data is completely observed over the
study period whereas w(ti j) < 1 indicates the information is partially observed. This accounts for
the increased probability of observing an event for individuals with longer follow-ups than those with
shorter periods of time. We assume that the probability of observing events over time ti j, Pr(Yi j >
0; ti j), is equal to w(ti j) Pr(Yi j > 0).
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The weighted ZIP mixed model is

Pr(Y = yi j; ti j) =


1 − w(ti j)πi j + w(ti j)πi je−λi j , yi j = 0,

w(ti j)πi j

λ
yi j

i j e−λi j

yi j!
, yi j > 0

(2.1)

and

logit(πi j) = ξi j = z′i jα + ui, log
(
λi j

)
= ηi j = x′i jβ + vi,

where zi j and xi j are respectively vectors of covariates for the logistic and the Poisson components,
and α and β are the corresponding vectors of regression coefficients. The ui and vi denote the random
effects and are assumed to be independent and normally distributed with mean 0 and variance σ2

u
and σ2

v , respectively. In this paper, we consider two weights functions. One is a uniform weight
function (denoted by W-ZIPu), i.e., w(t) = t/T where T is the complete observation time. The other
is an exponential weight function (denoted by W-ZIPe), i.e., w(t) = (1 − e−λt)/(1 − e−λT ), where λ
is a constant hazard and is estimated from the data using an exponential survival function. Their
performance is explored in the simulation studies.

3. Model estimation

To ensure convergence in estimation of parameters and random effects the penalized log-likelihood is
given by l = l1 + l2, where

l1 =
∑
{i j:yi j=0}

log
[
1 + exp(ξi j) − w(ti j) exp(ξi j) + w(ti j) exp(ξi j) exp(− exp(ηi j))

]
− log

[
1 + exp(ξi j)

]
+

∑
{i j:yi j>0}

log(w(ti j)) + ξi j − log
[
1 + exp(ξi j)

]
+ yi jηi j − exp(ηi j) − log(yi j!),

l2 = −
1
2

(
m log

(
2πσ2

u

)
+ σ−2

u u′u + m log
(
2πσ2

v

)
+ σ−2

v v′v
)

with l1 being the log-likelihood when the random effects are conditionally fixed, and l2 being the
penalty. The complete data log-likelihood lc is constructed as lc = lξ + lη with

lξ =
∑
i, j

ψi j log
(
1+exp(ξi j)−w(ti j) exp(ξi j)

)
+
(
1−ψi j

)
ξi j−log

(
1+exp(ξi j)

)
− 1

2

(
m log

(
2πσ2

u

)
+σ−2

u u′u
)
,

lη =
∑
i, j

(1 − ψi j)
(
yi jηi j − exp(ηi j)

)
− 1

2

(
m log

(
2πσ2

v

)
+ σ−2

v v′v
)
,

where ψi j is a latent variable indicating whether yi j comes from zero (ψi j = 1) or non-zero(ψi j = 0)
state. The complete log-likelihood lc can be easily maximized by maximizing the lξ and lη separately.
With EM algorithm, ψi j is estimated by its conditional expectation ψ(k)

i j under the current estimates
α(k), β(k), u(k), and v(k). Here

ψ(k)
i j =


1 + w(ti j) exp

(
− exp

(
x′i jβ

(k) + v(k)
i

))
1 − w(ti j) + exp

(
−t′i jα

(k) − u(k)
i

) 
−1

, yi j = 0,

0, yi j > 0.

Details are given in the Appendix A.
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Table 1: Bias, MSE, and Cov for ZIP and W-ZIP mixed models (uniform weight function)

ZIP mixed W-ZIPu mixed W-ZIPe mixed
Bias MSE Cov† Bias MSE Cov Bias MSE Cov

α0 −1.292 1.735 0.000 −0.037 0.268 0.930 −0.194 0.297 0.912
α1 −0.673 0.627 0.662 0.047 0.966 0.940 0.143 0.867 0.956

n = 250 σ2
u −0.046 0.007 0.282 0.098 0.080 0.750 0.067 0.058 0.790

m = 10 β0 0.008 0.015 0.952 0.010 0.015 0.952 0.022 0.017 0.924
β1 0.002 0.017 0.938 0.000 0.017 0.944 −0.011 0.017 0.940
σ2

v −0.010 0.005 0.292 −0.010 0.005 0.300 −0.008 0.004 0.282
α0 −1.282 1.714 0.000 −0.001 0.287 0.918 −0.127 0.337 0.900
α1 −0.654 0.615 0.670 0.093 0.982 0.948 0.019 1.057 0.926

n = 250 σ2
u −0.058 0.007 0.446 0.080 0.077 0.854 0.050 0.062 0.886

m = 25 β0 −0.002 0.026 0.942 −0.001 0.026 0.940 0.004 0.029 0.930
β1 0.009 0.015 0.944 0.007 0.014 0.948 −0.001 0.017 0.948
σ2

v −0.002 0.010 0.490 −0.003 0.010 0.496 −0.004 0.010 0.456
α0 −1.289 1.694 0.000 0.000 0.138 0.928 −0.145 0.149 0.892
α1 −0.646 0.520 0.482 −0.017 0.509 0.914 −0.005 0.413 0.950

n = 500 σ2
u −0.066 0.006 0.154 0.030 0.023 0.730 0.016 0.021 0.692

m = 10 β0 0.005 0.010 0.964 0.006 0.010 0.962 0.005 0.013 0.942
β1 0.001 0.007 0.956 −0.000 0.007 0.956 0.003 0.008 0.950
σ2

v −0.005 0.004 0.306 0.005 −0.004 0.306 −0.004 0.004 0.298
α0 −1.299 1.728 0.000 −0.026 0.145 0.924 −0.155 0.139 0.900
α1 −0.631 0.508 0.470 0.029 0.484 0.934 0.008 0.401 0.938

n = 500 σ2
u −0.078 0.007 0.124 0.009 0.022 0.874 0.000 0.016 0.846

m = 25 β0 0.008 0.024 0.926 0.009 0.024 0.928 −0.010 0.025 0.914
β1 −0.006 0.007 0.950 −0.007 0.007 0.954 −0.003 0.008 0.936
σ2

v −0.004 0.008 0.504 −0.004 0.008 0.502 0.009 0.011 0.474

MSE = mean square error; Cov = coverage probability; ZIP = zero-inflated Poisson; W-ZIP = weighted ZIP.
†: Coverage probability is the proportion of times the estimated 95% confidence interval contains the true value.

4. Simulation

Simulation studies were conducted to evaluate the performance of the proposed weighted ZIP mixed
models. Each of 500 data sets was generated from W-ZIP mixed model in (2.1). We consider one
common covariate for both logistic and Poisson components zi j = xi j generated from Uniform (0, 1).
The true values of the regression coefficients are assumed to be α′ = (1, 1) and β′ = (1, 2). The
variances of random effects for the logistic ui and Poisson part vi are set as σ2

u = 0.1, σ2
v = 0.2.

To mimic the Medicaid data analysis, we simulated observation time periods ti j from an exponential
distribution with a parameter 0.1 and set the maximum follow-up at 12 month. As a result, the mean
observation follow-up time was 6.8. The response yi j is obtained from weighted ZIP mixed model
with either uniform or exponential weight. Two sample sizes n = 250, 500 with m = 10, 25 clusters
are considered in this paper.

Tables 1 and 2 presents the results of evaluating the proposed W-ZIP mixed models compared to
ZIP mixed model. The bias, mean square error (MSE) and coverage probability are used to compare
the performance of the models. The W-ZIP mixed models performs well in estimating all the regres-
sion coefficients whereas estimates of logistic part in ZIP mixed models were biased with larger MSE
and smaller coverage rate compared with W-ZIP models. In particular, the estimated 95% confidence
interval for α̂0 in ZIP model never contained the true coefficient. The coverage probability for σ2

u and
σ2

v across all models was not close to the nominal confidence level but it increases as the cluster size
increases from 10 to 25. As expected, the bias and MSE decrease with increasing sample size.

In addition, the sensitivity of the proposed model was evaluated given data with outliers. We
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Table 2: Bias, MSE, and Cov for ZIP and W-ZIP mixed models (exponential weight function)

ZIP mixed W-ZIPu mixed W-ZIPe mixed
Bias MSE Cov† Bias MSE Cov Bias MSE Cov

α0 −1.224 1.573 0.004 0.094 0.338 0.944 −0.064 0.244 0.942
α1 −0.620 0.590 0.710 0.034 1.058 0.956 0.078 0.911 0.958

n = 250 σ2
u −0.042 0.009 0.226 0.116 0.099 0.764 0.081 0.070 0.764

m = 10 β0 0.010 0.017 0.944 0.012 0.017 0.940 0.013 0.015 0.942
β1 0.004 0.017 0.938 0.002 0.017 0.946 −0.004 0.016 0.928
σ2

v −0.005 0.004 0.348 −0.005 0.004 0.336 −0.010 0.004 0.284
α0 −1.207 1.529 0.000 0.132 0.616 0.928 0.012 0.314 0.948
α1 −0.621 0.602 0.686 0.081 1.628 0.942 0.025 0.905 0.954

n = 250 σ2
u −0.063 0.007 0.392 0.059 0.065 0.878 0.078 0.075 0.868

m = 25 β0 −0.014 0.027 0.954 −0.013 0.027 0.954 0.002 0.031 0.910
β1 0.008 0.015 0.942 0.007 0.015 0.944 −0.005 0.014 0.946
σ2

v −0.003 0.010 0.500 −0.003 0.010 0.498 −0.001 0.010 0.484
α0 −1.197 1.466 0.000 0.075 0.155 0.938 −0.018 0.126 0.946
α1 −0.650 0.520 0.440 0.071 0.500 0.946 0.023 0.421 0.958

n = 500 σ2
u −0.065 0.006 0.144 0.040 0.034 0.732 0.027 0.026 0.718

m = 10 β0 0.003 0.013 0.930 0.005 0.013 0.930 0.010 0.012 0.944
β1 0.003 0.007 0.944 0.001 0.007 0.944 −0.006 0.007 0.954
σ2

v −0.001 0.004 0.312 −0.001 0.004 0.310 0.002 0.004 0.308
α0 −1.197 1.463 0.000 0.087 0.123 0.962 0.016 0.126 0.952
α1 −0.634 0.485 0.452 0.083 0.407 0.960 0.005 0.403 0.946

n = 500 σ2
u −0.075 0.007 0.156 0.016 0.028 0.850 0.030 0.029 0.800

m = 25 β0 −0.004 0.025 0.924 −0.003 0.025 0.926 0.002 0.022 0.940
β1 0.006 0.007 0.942 0.005 0.007 0.946 −0.003 0.006 0.954
σ2

v −0.006 0.009 0.486 −0.006 0.009 0.482 −0.004 0.009 0.488

MSE = mean square error; Cov = coverage probability; ZIP = zero-inflated Poisson; W-ZIP = weighted ZIP.
†: Coverage probability is the proportion of times the estimated 95% confidence interval contains the true value.

Table 3: Evaluation for W-ZIP mixed models given data with outliers

W-ZIPu mixed W-ZIPe mixed
Bias MSE Cov† Bias MSE Cov

10% outliers

α0 0.060 0.266 0.950 −0.054 0.237 0.952
α1 0.088 1.058 0.956 0.059 0.941 0.958
β0 0.014 0.047 0.912 0.013 0.047 0.912

n = 250 β1 −0.012 0.022 0.914 −0.011 0.022 0.914
m = 10

20% outliers

α0 0.088 0.336 0.950 −0.025 0.291 0.948
α1 0.045 0.896 0.962 0.018 0.798 0.964
β0 0.000 0.070 0.904 −0.001 0.070 0.904
β1 −0.023 0.030 0.918 −0.023 0.030 0.918

MSE = mean square error; Cov = coverage probability; ZIP = zero-inflated Poisson; W-ZIP = weighted ZIP.
†: Coverage probability is the proportion of times the estimated 95% confidence interval contains the true value.

used the same simulation settings described earlier and randomly selected 10% or 20% of outcomes.
Then outliers were generated from weight ZIP model in (2.1) with ui ∼ N(0, 1) and vi ∼ N(0, 2)
for outliers. Table 3 shows that all W-ZIP models have low bias and MSE for estimating β and the
coverage probabilities for all estimates were close to the nominal 95%.

5. Application to Medicaid data

To demonstrate the approach with real study data, we applied it to a study of federally-funded com-
munity health centers (HCs) funded by the Bureau of Primary Health Care (BPHC). This study was
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Table 4: Means of patients’ characteristics before and after the propensity score matching

Unmatched (n = 103,379) Matched (n = 40,122) % Balance
HC Non-HC HC Non-HC Improvement

n = 20,061 n = 83,318 n = 20,061 n = 20,061 Mean Diff.
Age 31.4 33.0 31.4 31.5 94.9
Female 0.816 0.731 0.816 0.813 96.3

Race

White 0.186 0.509 0.186 0.189 99.1
Black 0.539 0.283 0.539 0.538 99.6
Hispanic 0.134 0.073 0.134 0.135 99.2
Others 0.141 0.135 0.141 0.138 42.9
Cash assistance 0.166 0.129 0.166 0.165 96.8

Medicaid Blind/disabled 0.206 0.274 0.206 0.208 96.9

eligibility Medical need 0.409 0.439 0.409 0.386 23.7

groupa Poverty 0.279 0.221 0.279 0.291 79.1
Aged 0.006 0.011 0.006 0.006 94.4
Others 0.365 0.403 0.365 0.371 82.4

TANF eligibleb 0.057 0.027 0.057 0.056 99.0
Restricted benefitsc 0.107 0.040 0.107 0.111 92.9
Delivery during the year 0.079 0.044 0.079 0.076 91.3
CDPS risk scored 0.805 1.028 0.805 0.811 97.1

a : Enrollees may be have more than one eligibility category assigned over the course of the year. Eligibility categories are
grouped from original Medicaid Analytic eXtract data.

b : Enrollee is eligible for Temporary Aid For Needy Families (TANF) program in any month during the data year.
c : Enrollee is eligible under restricted benefits at any point during the data year.
d : http://cdps.ucsd.edu/index.html

designed to assess how the use of HCs relates to health care costs and utilization for vulnerable popu-
lations in the US. HCs provide comprehensive primary care and supportive services and are required
to provide care for Medicaid enrollees. Recent expansions in the HC program have raised concerns
about the financial sustainability of the program. Therefore, it is critical to understand if receipt of
primary care in a HC has any association with health service utilization and spending for Medicaid
enrollees. Of several sub-studies, we focused on a specific study using Medicaid claims data to com-
pare Medicaid enrollees receiving primary care at HCs to non-HC users. We obtained claims data
from the Medicaid Analytic eXtract (MAX) files, which is a dataset that contains individual-level
protected health information. Data are not public, but available for use by researchers under a data
use agreement and demonstration of adequate privacy and security protections. We defined a HC user
as a patient who had more than half of their primary care visits in HCs. For this analysis, we used Illi-
nois Medicaid claims data from 2009. We restricted the study population to adults aged 18 years and
older. There were 103,379 Medicaid enrollees and roughly 19.4% of them (n = 20,061) obtained the
majority of their primary care at HCs and the remaining 83,318 received care mostly elsewhere (e.g.,
physician office, hospital outpatients, and mixed use). The data set included not only individual-level
determinants but also geographical information, Primary Care Service Area (PCSA) (Goodman et al.,
2003) for each beneficiary, which approximates the local geographic market for primary care. A high
degree of variation across PCSAs exists; however, great homogeneity is frequently observed within a
PCSA. Thus a random effect in a model is considered accounting for the clustering effect of a total of
379 PCSAs. The size of PCSA ranged from 1 to 5,655.

Due to the observational nature of the study, there are undoubtedly underlying characteristics that
made patients more likely to visit HC or non-HC initially. Thus, we employed propensity scores to
balance on observable characteristics between HC and non-HC. We considered potential confounding
factors including patient demographics (age, sex, race), insurance characteristics (Medicaid eligibil-
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Table 5: Parameter estimates and standard errors for ZIP and W-ZIP mixed models

Variable ZIP mixed W-ZIPu mixed W-ZIPe mixed
Estimate Standard error Estimate Standard error Estimate Standard error

Logistic Int. −0.446a 0.028 0.118a 0.022 0.077a 0.022

part HC 0.068a 0.021 0.074a 0.018 0.076a 0.018
σ2

u 0.068 0.001 0.033 0.001 0.032 0.001

Poisson Int. 0.466a 0.033 0.477a 0.031 0.476a 0.031

part HC −0.034a 0.013 −0.032a 0.013 −0.032a 0.013
σ2

v 0.171 0.001 0.152 0.001 0.154 0.001
−Log-likelihood 47640.62 47719.06 47517.61
AIC 95293.24 95450.13 95047.23
BIC 95315.72 95472.60 95069.70

ZIP= zero-inflated Poisson; W-ZIP=weighted ZIP; AIC=Akaike information criteria; BIC=Bayesian information criteria.
a : Indicates significance with α < 0.05.

ity category, Temporary Aid For Needy Families (TANF) beneficiary indicator), and disease burden
(childbirth, Chronic Illness and Disability Payment System for Medicaid (CDPS) risk score). Using
1 : 1 nearest matching, we obtained a subsample (n = 40,122) of the dataset in which patients who did
(and did not) receive their primary care service at HC were comparable. Table 4 describes the dataset
before and after the propensity score matching.

Among various utilization measures of health services, we focused on the number of ED visits,
which is a highly skewed distribution. Over half of individuals (68.6%) had never visited the ED over
the year whereas about 0.5% (n = 564) utilized the service more than 10 days. The maximum was
133 days. We observed only 57.9% of the Medicaid patients were enrolled for the entire year and the
mean observation period was 9.3 months.

The results of fitting ZIP and W-ZIP mixed models with two different weight functions are given
in Table 5. The results suggest that W-ZIPe model fits the data better than the other models in terms
of smaller Akaike information criteria (AIC) and Bayesian information criteria (BIC). The estimates
across all three models were very similar; HC covariate significantly affect ED visits in both logistic
and Poisson parts of the models. Based on the Poisson part of the model, among patients who are
potentially in need of emergency room care, HC users have less utilization than non-HC users. The
health center setting may provide an efficient means of providing primary care for the Medicaid popu-
lation. However, the intercept in zero-inflated part of ZIP model is less than W-ZIP models, reflecting
the bias of ZIP toward underestimating utilization.

6. Discussion

In this paper, a weighted ZIP mixed model has been developed to analyze hierarchical count data with
excess zeros and a variable observation time. We present two simple weight functions to handle the
different individual follow-up times; however, our simulation studies show that the weighted models
improve the estimate of zero-inflated part adequately. As a result, we believe our proposed model will
be a useful tool to analyze properly zero-inflated count data with both random effects (clustering) and
censoring in order to answer critical questions in biomedical, medical, and public health applications
where such complicated data sometimes arise. To our knowledge, models that address all three issues
(i.e., zero-inflation, clustering, and censoring) do not currently exist. In Medicaid health care utiliza-
tion data analysis, weighted ZIP mixed model using an exponential function provides the best fit and
the intercept estimate of zero-inflated part in weighted ZIP models much less bias than the unweighted
ZIP model. Alternatively, different individual follow-up times can be handled by incorporating an off-
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set into the Poisson part (Lee et al. 2001). However, we argue that a subject who experiences no event
over the entire study period should be treated differently and properly from one experiencing no event
but followed only partially. Model (1), therefore, incorporates a weight both the logistic and Poisson
part of the model. Finally, the weight can be easily extended to a function incorporating covariates
when an assumption that individual follow-up time depends on a certain covariates is reasonable. For
instance, the weight function can be estimated semiparametrically based on the Cox regression model
or parametrically. This represents an area of possible future research.

Appendix A:

A.1. EM algorithm [
α(k+1)

u(k+1)

]
=

[
α(k)

u(k)

]
+ ℑ−1

α,u

[
∂lξ/∂α
∂lξ/∂u

]
,[

β(k+1)

v(k+1)

]
=

[
β(k)

v(k)

]
+ ℑ−1

β,v

[
∂lη/∂β
∂lη/∂v

]
,

where

ℑα,u =
[
Z′

K′

] (
−
∂2lξ
∂ξ∂ξ′

) [
Z K

]
+

[
0 0
0 σ−2

u Im

]
,

ℑβ,v =
[
X′

K′

] (
−
∂2lη
∂η∂η′

) [
X K

]
+

[
0 0
0 σ−2

v Im

]
,

∂lξ
∂α
= Z′

∂lξ
∂ξ
,

∂lξ
∂u
= K′

∂lξ
∂ξ
− u
σ2

u
,

∂lη
∂β
= X′

∂lη
∂η
,

∂lξ
∂v
= K′

∂lη
∂η
− v
σ2

v

and

∂lξ
∂ξi j
= 1 −

ψi j

1 + exp(ξi j) − wi j exp(ξi j)
−

exp(ξi j)
1 + exp(ξi j)

,

∂lη
∂ηi j
= (1 − ψi j)

(
yi j − exp(ηi j)

)
.

Then we have

∂lξ
∂ξ
=

ψ

1 + exp(ξ) − w exp(ξ)
− exp(ξ)

1 + exp(ξ)
,

∂lη
∂η
= (1 − ψ)(y − exp(η))

and

−
∂2lξ
∂ξ∂ξ′

= Diag
 ψ exp(ξ)(w − 1)(

1 + exp(ξ) − w exp(ξ)
)2 +

exp(ξ)
(1 + exp(ξ))2

 ,
−
∂2lη
∂η∂η′

= Diag
[
(1 − ψ) exp(η)

]
.
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A.2. Variance component estimation

Suppose ℑα,u is partitioned conformally to :

α|u as ℑ−1
α,u =

[
A11 A12
A21 A22

]
.

Suppose ℑβ,v is partitioned conformally to :

β|v as ℑ−1
β,v =

[
B11 B12
B21 B22

]
.

Then estimators of variance components are given by:

σ̂2
u =

1
m

(
tr(A22) + û′û

)
,

σ̂2
v =

1
m

(
tr(B22) + v̂′v̂

)
.

In addition, the asymptotic variance matrix of the variance component estimators are obtained
from the inverse of the residual maximum likelihood information matrix (McGilchrist and Yau, 1995)
as follows:

var
[
σ̂2

u
σ̂2

v

]
= 2

σ−4
u tr

(
Im − σ−2

u A22

)2
0

0 σ−4
v tr

(
Im − σ−2

v B22

)2


−1

.

Appendix B:

R for fitting weighted ZIP models.

[language=R]

# m = # clusters, ni=# subjects within cluster i, N=sum of ni

# Y(Nx1) outcomes

# Z(pz x N) covariates for logit part

# X(px x N) covariates for Poisson part

# K=cluster indicator (mxN)

# w(Nx1) weight

# alpha, beta, sig2u, sig2v : initial values

library(psych)

estpm =function(Y,Z,X,K,w, alpha=NULL, beta=NULL, sig2u=NULL, sig2v=NULL){

N = dim(Y)[1]

pz = dim(Z)[1]

px = dim(X)[1]

m = dim(K)[1]

pzm=pz+m

pxm=px+m

if (is.null(alpha)){alpha=as.matrix(c(1,1))}

if (is.null(beta)){beta=as.matrix(c(1,2))}

if (is.null(sig2u)){sig2u=0.5}
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if (is.null(sig2v)){sig2v=0.5}

u=as.matrix(rnorm(m, sd=sqrt(sig2u)),m,1)

v=as.matrix(rnorm(m, sd=sqrt(sig2v)),m,1)

it = 0; dta = 1

itMax=1e4; eps=1e-5

while( (it<itMax)&(dta>eps) ){

ex_xi=exp(t(Z)%*%alpha+t(K)%*%u)

ex_eta=exp(t(X)%*%beta+t(K)%*%v)

pi=ex_xi/(1+ex_xi)

#1) psi

psi=(1-w*pi)/(1-w*pi+w*pi*exp(-ex_eta))

psi[Y>0]=0

#2) first derivatives

d1=1-psi/(1+ex_xi-w*ex_xi)-ex_xi/(1+ex_xi)

d2=(1-psi)*(Y-ex_eta)

dalpha=Z%*%d1 #pzx1

dbeta=X%*%d2 #pxx1

du=K%*%d1-u/sig2u #mx1

dv=K%*%d2-v/sig2v

#3) "-2nd derivatives"

dd1=-psi*ex_xi*(1-w)/(1+ex_xi-w*ex_xi)ˆ2+ex_xi/(1+ex_xi)ˆ2

dd2=(1-psi)*ex_eta

#4) inversion matrix

tmp1=T1=matrix(0,pzm,pzm) ; tmp2=T2=matrix(0,pxm,pxm)

ZK=rbind(Z,K)

XK=rbind(X,K)

diag(tmp1[(pz+1):pzm,(pz+1):pzm])=1/sig2u

diag(tmp2[(px+1):pzm,(px+1):pzm])=1/sig2v

for (i in 1:pzm){for (j in 1:pzm){T1[i,j]=sum(ZK[i,]*ZK[j,]*dd1)} }

for (i in 1:pxm){for (j in 1:pxm){T2[i,j]=sum(XK[i,]*XK[j,]*dd2)} }

T1=T1+tmp1

T2=T2+tmp2

A1=T1[1:pz,1:pz]

B1=T1[1:pz,(pz+1):(pz+m)]

C1=T1[(pz+1):(pz+m),1:pz]

D1=T1[(pz+1):(pz+m),(pz+1):(pz+m)]

A2=T2[1:px,1:px]

B2=T2[1:px,(px+1):(px+m)]

C2=T2[(px+1):(px+m),1:px]

D2=T2[(px+1):(px+m),(px+1):(px+m)]
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ai1=solve(A1)

di1=solve(D1)

ai2=solve(A2)

di2=solve(D2)

AI1=solve(A1-B1%*%di1%*%C1)

DI1=solve(D1-C1%*%ai1%*%B1)

AI2=solve(A2-B2%*%di2%*%C2)

DI2=solve(D2-C2%*%ai2%*%B2)

BI1=-ai1%*%B1%*%DI1

CI1=-di1%*%C1%*%AI1

BI2=-ai2%*%B2%*%DI2

CI2=-di2%*%C2%*%AI2

# 5) update

Alpha=alpha+AI1%*%dalpha+BI1%*%du

Beta=beta+AI2%*%dbeta+BI2%*%dv

U=u+CI1%*%dalpha+DI1%*%du

V=v+CI2%*%dbeta+DI2%*%dv

Sig2u=(tr(DI1)+t(u)%*%u)/m

Sig2v=(tr(DI2)+t(v)%*%v)/m

dta = mean(c(abs(Alpha-alpha),abs(U-u),abs(Beta-beta),abs(V-v)

,abs(Sig2u-sig2u),abs(Sig2v-sig2v)))

alpha = Alpha

u = U

beta = Beta

v = V

sig2u = as.vector(Sig2u)

sig2v = as.vector(Sig2v)

it = it + 1

}

pi=ex_xi/(1+ex_xi)

lambda=ex_eta

loglik=sum((log(1-w*pi+w*pi*exp(-lambda)))[Y==0])

+sum((log(w)+log(pi)+dpois(Y,lambda,log=TRUE))[Y>0])

+sum(dnorm(u,sd=sqrt(sig2u),log=TRUE)+dnorm(v,sd=sqrt(sig2v),

log=TRUE))

XM=matrix(0,m,m);diag(XM)=1

a.comp=(tr(XM-DI1/sig2u)/sig2u)ˆ2

b.comp=(tr(XM-DI2/sig2v)/sig2v)ˆ2

var_sig2u=2/a.comp

var_sig2v=2/b.comp

out=list(alpha=alpha, beta=beta, u=u,v=v, sig2u=sig2u, sig2v=sig2v, var1=AI1

, var2=AI2, loglik=loglik,var_sig2u=var_sig2u,var_sig2v=var_sig2v)

}
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