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ABSTRACT : A Poisson error model as a generalized 
linear mixed model (GLMM) has been suggested for 
genetic analysis of counted observations. One of the 
assumptions in this model is the normality for random 
effects. Since this assumption is not always appropriate, a 
more flexile model is needed. For count traits, a Poisson 
hierarchical generalized linear model (HGLM) that does 
not require the normality for random effects was proposed. 

In this paper, a Poisson-Gamma HGLM was examined 
along with corresponding analytical methods. While a 
difficulty arises with Poisson GLMM in making 
inferences to the expected values of observations, it can 
be avoided with the Poisson-Gamma HGLM. A numerical 
example with simulated embryo yield data is presented. 
(Key Words: Generalized Linear Mixed Model, Hierar­
chical Likelihood)

INTRODUCTION

Various quantitative genetic analyses of non-normal 
data have been extended from Hendersonian mixed linear 
model methodology. For instance, ordinary categorical 
traits such as dystocia were analyzed with thresh이d 
models (Gianola and Foulley, 1983; Harville and Mee, 
1984; Zhao, 1987). A probit link function was 
recommended for analysis of a Bernoulli variable such as 
survival data (Foulley et al., 1987; Everett, 1996). Poisson 
models have been suggested fbr counted variates, e.g. litter 
size (Foulley et al., 1987), prolificacy (Perez-Enciso et al., 
1993), and embryo yield (Tempelman and Gianola, 1994).

All the analyses mentioned above had a linear aspect 
in the systematic part of the analytical model, and these 
models may be categorized as generalized linear mixed 
models (GLMM). In this class of mod비s, observations 
can have errors from some exponential family. However, 
random components are assumed to be normal.

Recently, Lee and Nelder (1996) proposed 
substantially flexible models called the hierarchical 
generalized linear models (HGLM). In the models, the 
normality fbr random effects is no longer a restriction, 
and the distribution of these effects may be arbitrary.

In this paper, it is maintained that HGLM can be 
utilized for analysis of counted traits because it satisfies 
the following assumptions: the phenotypes have a Poisson 

distribution, and a Gamma distribution is used for random 
effects. It has been known that Poisson or Negative 
Binomial distributions are suitable to analyze counted 
traits (Foulley et al., 1987; Perez-Enciso et al., 1993; 
Tempelman and Gianola, 1994). One of the choices fbr 
the distribution of random effects is a conjugate family. 
So, if the observations conditional on random components 
are assumed to have a Poisson distribution, then the 
distribution fbr the random effects is Gamma. This model 
is defined as the Poisson-Gamma HGLM. As a specific 
case, the Poisson-Gamma HGLM o이y with an intercept 
and random effects leads to the Negative Binomial model.

The objective of this study was to derive a Poisson- 
Gamma HGLM fbr sire evaluation. This involves a 
formulation of hierarchical likelihood function and a 
procedure fbr estimating fixed effects, random effects, and 
dispersion parameters in the model. A numerical example 
with a simulated data set is presented.

AN OVERVIEW OF HIERARCHICAL 
GENERAUZED UNEAR MODELS

Explained here are the HGLM of Lee and Nelder 
(1996) and its corresponding likelihood called hierarchical 
likelihood. This likelihood is an expansion of Henderson^ 
(1975) joint likelihood to non-normal mixed models.

Hierarchical generalized linear models
Let y be the observable response variable and u be the 

unobservable random effect. First, the conditinoal log­
likelihood for y given u is assumed as
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1(0； 0 ；y|u)= {y。’一 b(H')}/a(0) + c(y, 0)

where a, b, and c are known functions, and 0' and 0 
are the canonical and dispersion parameters, respectively. 
The conditional mean and variance are E (y | u)=卩'and 
var (yI u) = 0V(#‘)where 〃' = g (丿/) with a 
generalized linear model (GLM) link function, g. The 
linear predictor 〃' takes the form

7)f = 〃 + Zv

where 〃 = Xg as for a GLM of Nelder and Wedderbum 
(1972) and v = v (u) for some strictly monotonic function 
of u.

Secondly, the distribution of u is assumed appro­
priately from an arbitrary density. Most researchers in this 
area assumed that the distribution of v is Normal (Westell, 
1984; Foulley et al., 1987; Zhao, 1987; Breslow and 
Clayton, 1993; Foulley and Im, 1993; Perez-Enciso et al., 
1993; Tempelman and Gianola, 1994; Klei, 1995; Lee 
and Pollak, 1997). The normality assumption is convenient 
when the random effects, v, are correlated. However, the 
distribution of v, or equivalently u, is better decided by the 
properties of data or the purposes of inference.

Hierarchical likelihood
The hierarchical likelihood is defined as;

h = 1 (伊，0 ; y|v) + 1 (q ; v),

where 1(。'，(5 ; y | v) is the log-density function for y 
given v, and 1 (a ； v) is the log-density function for v 
with parameter a. This likelihood is the logarithm of the 
joint density function for y and v. This reduces to 
Henderson's joint likelihood under the normality of 
both y I v and v. The hierarchical likelihood is not an 
orthodox likelihood because v are unobservable.

The estimators and predictors can be derived by 
maximizing the hierarchical likelihood, i.e*, the estimates 
are obtained by solving 8h / 8g = 0 and 8h / 8v = 0. 
The use of hierarchical likelihood avoids the integration 
required for marginal likelihood.

A POISSON-GAMMA HIERARCHICAL 
GENERAUZED 니NEAR MODEL

A poisson-gamma model
An HGLM with one fixed effect and one random 

effect was considered to evaluate genetic merit of sires 
without their relationship. Suppose that the conditional 
distribution of a counted variate yijk given has the

Poisson distribution with Poisson parameter Ay ~ 卩，j = 
卩j u仍ie,

f\ 0(,* I %) = e-勺房*/%!

y* = 0, 1, . . . ； i = 1, 2, . . . , n; j = 1, 2, . . . , rij；

k = 1, 2, . . . nk; /I ij > 0.

Then 나le conjugate HGLM is

= ln" i + In* = “,• +=" + 们+ 為，

where 卩 =Xg and = logu,. Assumed is a constraint 
on u such as E (u.) = 1, a conjugate density for u is a 
gamma distribution with shape parameter a such that

£ (시 = ”成厂成旳/厂S).

Then the hierarcical log likelihood is constructed by 
summing the logarithms of the density functions shown 
above;

h = 1 ((9； 0 ； y|v) + 1 (q ; v)
8 Sijk (Yijkln X - /lij) + Sij (^Vjj + tzlntz - 

一血厂(q)}.

In order to estimate fixed and random effects given 
parameters, the first derivatives against those effects are 
first derived as follows:

8h / = Sijk (Yijk - "?)；

8 h / 8们=Sjk (Yijk 一 “；)；

자니 M = Sk (y^ - Ao) + w (1 — 旳).

And the second derivatives are calculated:

a2h/a/? =-Sijk 卩‘疝
=-Sjk山卜

S2h / 3 =-（Sa心+當勺）；
S2h /i =-爲0j；
S2h /df/dNij =一紐k山j；
S2h /3y?i SVjj =一急心；
S2h / =0 when i # Zz ;
S2h / dNjjdNrf =0.

The corresponding expected Hessian matrix can be 
written as;

=/XTWX XTWZ\
~ \ ZTWX ZTWZ + u 丿，

where W is the GLM weight function, W = (3/Z /S^) 2V
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Let (g佝 v佝)'be a k山 solution vector. Then this vector 
can be solved by the Newton-Raphson method as follows.

In every round, (k + 1)山 solutions satisfy the above 
equation. Iterations continue until solutions are converged. 
The resulting solutions have the following properties:= 
(Yij+ + a) / (/釦+ + a) where yij+ = SkYijk and = 
、k“ijk, is the best linear unbiased predictor, and 8 is 
marginal maximum likelihood estimator.

Scaled deviance test
The scaled deviance is defined as;

D(y,亿)=-2 {1(/, 0 ；y|v) — 1 (y, 0 ;y|v)}

with the estimated degrees of freedom n-trace
where H* is a modified H excluding the matrix U in the 
last block diagonal part. The scaled deviance test is 
performed by comparing the scaled deviance with the 
degree of freedom; if the former is much larger than the 
latter, then we may suspect the absence of some 
necessary fixed effects, random effects, or overdispersion 
in the y I v distribution.

Estimation of dispersion parameters
One of the major interests in the models with random 

effects is to develop better methods that estimate 
dispersion parameter for random and error components. 
Along with MLM, Patterson and Thompson's(1971) 
restricted maximum likelihood (REML) has been 
employed to estimate variance components. Breslow and 
Clayton (1993) extended this approach to GLMM by 
using the normal likelihood. In HGLM, Lee and Nelder 
(1996) introduced the maximum adjusted profile 
hierarchical likelihood estimator (MAPHLE). Adjusted 
hierarchical likelihood is defined as follows;

hA = h + .51n {det (2^- OH-1)).

Then the adjusted profile hierarchical likelihood is

hp = hAI = v = v,

where § and v are estimated values. The first and the 
second derivatives against a are derived:

池 d
「慕=S (Vy-Wjj + In(2 + 1 -—血厂(q))-

丄"广 쁫―)
2 da 7
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d2hA 
da2 =S

1 cP 1 , dH
◎ 一厅WJ））+亍打代気

Let the Hessian matrix Hp = — 32hA /da2- Then the 
MAPHLEs for dispersion parameters can be obtained by 
iteratively solving the equation below:

/E= "幻+ （屛）） 니 /)

The MAPHLE becomes the REML estimator in mixed 
linear models, so that it is the generalization of the 
REML estimator to non-normal mixed models.

NUMERICAL EXAMPLE

Simulation
A simulation was performed to illustrate the procedure 

for sire evaluation with the Poisson-Gamma HGLM. 
Simulated were embryo yields within a nucleus scheme. 
An embtyo yield was generated with a Poisson parameter 
(A jj) whose logarithm was additively explained by fixed 
and random effects. The fixed effects had two levels. The 
underlying means on the log scale were In (6) and In (9) 
fbr the two levek.

Thirty sire of dam random effects were generated 
from the gamma distribution with shape parameter equal 
to 5, and the sires were assumed to be unrelated. 
However, the use of the sire of dam effects might be 
vulnerable because genetic effects fbr embryo yields were 
not significant in previous studies (Lohuis et al., 1990; 
Hahn, 1992). Since service sire effects were an important 
source of variation for embryo yield (Lohuis et aL, 1990; 
Hasler, 1992), the generated random effects could be 
considered as the unrelated service sire effects.

All the random deviates from Poisson and Gamma 
distributions were generated with the algorithms by Press 
et al. (1992). The simulated data by fixed and random 
effects are shown in table 1. Each sire had 10 female

Table 1. Simulated embryo yields by fixed and random effects
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progeny with their simulated embryo yield records.

RESULTS

The scaled deviance was 283.5 with 272.5 degrees of 
freedom, showing no lack of fit. The normal probability 
plot in figure 1 is almost straight, indicating that the 
Gamma assumption is plausible. The MAPHLE of shape 
parameter fbr Gamma distribution was 6.78, which is 
comparable to the input value 5. Then the variance 
estimate of the random effects u is 1/6.78 = .15. The 
estimates of the underlying means on the log scale were 
1.70 ± .11 and 2.26 ± .15 for the first and second fixed 
effects, respectively. The results indicated that they 
correspond to their input values, 1.79 and 2.20.

으
뜨
응
읜
 p

인
®
믄

。

Figure 1. Normal probability plot for residuals of 
simulated data using a Poisson-Gamma hierarchical 
generalized linear model.

DISCUSSION

While several researchers (Gianola and Foulley, 1983; 
Foulley and Gianola, 1984) have suggested the Bayesian 
estimation of parameters fbr non-norm al data, a 
hierarchical likelihood-based method derived from a 
frequentist perspective is utilized in this paper. Subjective 
decisions on prior distributions of parameters are required 
in the Bayesian analysis. Generally, the assumption about 
disrtibutions of B and a can not be verified with any 
data. In HGLMs, any additional assumptions are not made 
on these parameters contrary to subjective priors in the

Bayesian analyses.
The random effects are not directly observable, but 

the assumption on their distributions can be justified by 
normal probability plot (figure 1). However, with the 
limited amount of data, a decision ought to be made on 
the distribution of random effects. When the random 
components are correlated, the normality assumption is 
convenient to represent the covariance structure. On the 
other hand, a merit from the choice of Gamma is that it 
enables an easy inference on the expected value of 
observations. With the Poisson GLMM, the expected 
value of response variate cannot be defined (Foulley 
and Im, 1993), because “ = g-1( ")手 E (g-1 (“ + v)}= 
E (y). However, the bias in multiplicative models where

"u can be avoided by having a distribution of u 
satisfying E (u) = 1. For example, the first and the second 
moments for the phenotypes using the Poisson-Gamma 
HGLM in this study are

E (y)=么 and
var (y) = E {var (y | u)} + var {E (y | u)} = p2/a + ".

Therefore, the choice of Gamma leads to an easy 
inference on the population average. Furthermore, the 
convergence rate was much faster employing Gamma 
distribution than employing Normal in several runs with 
various initial values (Results are not shown). In this 
study, the use of the conjugate HGLM resulted in fewer 
numerical problems (e.g divergence) than the use of 
Norm이 density, so that the computational burden is 
reduced with a conjugate family.

Normality of random effects, which has been assumed 
by most researchers, may not be always the best choice. 
In animal breeding, the normality of genetic random 
effects means the normality of base animals' genetic 
effects. Most analyses have assumed that base animals are 
from a complete random population, which is not always 
the case in reality. Base animals in the population are 
naturally and artificially selected prior to the generation. 
As an attempt to reduce this problem, WestelFs (1984) 
genetic groups have been occasionally employed. 
However, complementary solutions to this approach have 
not been found to date. In addition, the selection problem 
could be worse in the less developed countries since they 
import some superior animals from developed countries. 
This, in turn, may breach the normality assumption. 
Although interbull approaches reduce the problem, the 
use of the method is restricted to the developed countries, 
e.g. evaluation of conformation trait data from the United 
States and the Nethelands by Klei (1995). Similar to the 
case of the normality assumption about base animals, the 



SIRE EVALUATION OF COUNT TRAIT 647

normality assumption about the sire of dams effects (or 
the service sire effects) for embryo yields is practically 
questionable, because they are unlikely sampled from a 
random population. Sometimes a flexible density function 
that allows skewedness may fit those kinds of data better.

A numerator relationship matrix is often employed to 
explain pedigree in the analyses for animals' genetic 
merit. With Gamma density used in this study, the 
covariance structure based on the pedigree is not feasible 
to construct. To remedy that problem, a Choleski factor 
can be used; the linear predictor would be 寸 = Xg + 
ZLu where L is a lower triangular matrix satisfying A = 
LLZ.

Generally, having more than one random components 
is a concern for analytical models in animal genetic 
analyses. For example, analytical model for weaning 
weight evaluation typically includes at least direct genetic, 
maternal genetic, permanent environmental random effects 
(Lee and Pollak, 1997). The procedure for the 
generalization of the hierarchical models is straight­
forward. Therefore, multiple random effects can be 
included simultaneously in an analysis with the HGLM. 
Furthermore, various distributions can be considered for 
each random effect in HGLMs.
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