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Abstract

Contemporary biomedical data often involve an ill-posed problem owing to small sample size and large
number of multi-collinear variables. Partial least squares (PLS) method could be a plausible alternative to an
ill-conditioned ordinary least squares. However, in the case of a PLS model that includes a random-effect, how
to deal with a random-effect or mixed effects remains a widely open question worth further investigation. In
the present study, we propose a modified multivariate PLS method implementing mixed-effect model (PLSM).
The advantage of PLSM is its versatility in handling serial longitudinal data or its ability for taking a random-
effect into account. We conduct simulations to investigate statistical properties of PLSM, and showcase its real
clinical application to predict treatment outcome of esthetic surgical procedures of human faces. The proposed
PLSM seemed to be particularly beneficial 1) when random-effect is conspicuous; 2) the number of predictors is
relatively large compared to the sample size; 3) the multicollinearity is weak or moderate; and/or 4) the random
error is considerable.
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1. Introduction

If a data set includes a large number of variables with relatively small sample size, the situation
can be called a high-dimensionality low sample size (HDLSS) problem. It may be also common to
see a data set that demonstrates a high correlation structure between and/or within variables. An ex-
ample for this situation might be face change data after cosmetic surgical procedures. In the past,
accurate prediction of a treatment outcome after facial cosmetic surgery had been challenging. This
was primarily due to the fact that facial soft-tissue responses were influenced by a number of fac-
tors that may reach approximately 300 variables including soft-tissue landmarks of a patient, skeletal
bone landmarks, the amount of surgical skeletal repositioning of the bone both in vertical and hori-
zontal direction, and demographic characteristics (Suh ef al., 2019; Hwang et al., 2021). Added to
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the strong correlation between bone and soft-tissue response, significant correlation structures were
commonly observed between and within the predictor and response matrices of an individual subject.
Furthermore, the horizontal surgical repositioning of a certain skeletal anatomy could induce its ver-
tical repositioning also, and vice versa. Conventional ordinary least squares methods cannot properly
deal with these challenges. Consequently, the prediction of treatment outcome after surgery requires
a sophisticated methodology that involves multiple predictors and multiple response variables simul-
taneously. In this situation, the partial least squares (PLS) method could be a plausible alternative to
cope with this problem instead of an ill-conditioned ordinary least squares regression model (Lee et
al., 2010; Suh et al., 2012; Lee et al., 2014; Suh et al., 2019; Fordellone and Vichi, 2020).

However, the conventional PLS method has a limitation when the predictor variables have mixed
effects, i.e., fixed and random effects. Contemporary data sets may often include both fixed-and
random effects. In the case of a PLS model that includes a random-effect, how to deal with a random-
effect or mixed effects remains a wide open question worth further investigation.

The aim of the present study is to propose a modified multivariate PLS method implementing
mixed-effect model (PLSM), which can provide more accurate prediction than the conventional PLS
algorithm. To evaluate PLSM and to compare it with the conventional PLS method, we perform a
simulation study and apply PLSM to a real clinical data set for predicting treatment outcomes of
facial cosmetic surgery.

2. Review on PLS and the linear mixed-effect model

The PLS regression finds principal components that explain response variables Y as well as
predictors X. In other words, it identifies a set of latent variables, T and U, that contains most of the
variation in X and models Y best at the same time,

Y = XB with X=TP"+E and Y =UQ"+F, @2.1)

where Y., X,ix, and B, are matrices of response, predictor and regression coefficient, respectively;
Tixa> Ppxas and E,y, are score, loading and residual matrices for X, respectively; Uy, Qixa, and Fpy
are score, loading and residual matrices for Y, respectively; n, k, p and a are the numbers of obser-
vations, response variables, predictor variables and latent variables, respectively. Basic ideas of PLS
were developed in chemometrics (Wehrens, 2011). In chemometrics, the number of predictor vari-
ables (p) often exceeds the number of observations (n), a typical HDLSS situation. In addition, when
the variables are highly collinear or correlated, the conventional ordinary least squares model is not
suitable for producing robust results (Zhou et al., 2005). Since PLS can eliminates multi-collinearity
and reduce the dimensionality to improve the prediction accuracy, it has become a viable tool for
predictive purposes in many scientific and technological applications including image analysis, bio-
statistics and bioinformatics (Dai et al., 2006; Mevik and Wehrens, 2007; Hastie et al., 2009; Martins
et al., 2010; Krishnan et al., 2011).

A mixed-effect model contains both predictor variables with a fixed-effect and those with a random-
effect,

Y =XB +ZA +E, 2.2)

where Y, and E, . are response and residual matrices; X,,»,, and B 5 are design and parameter ma-
trices for predictors with fixed effects; Z,, and A are design and parameter matrices for predictors
with random effects; n, k, p and g are the numbers of observations, response, fixed-effect predictor
and random-effect predictor variables, respectively.



Modified partial least squares 67

The linear mixed model has some statistical advantages compared to the linear model with only
fixed effects. The mixed model does not require observations to be independent and with equal vari-
ance, and can test random effects providing individual variability. Therefore, it can be useful when
measurements are made on the same or related statistical units, such as repeated measurements over
time in longitudinal growth data sets (Laird and Ware, 1982).

3. Joint modelling approach for the PLS algorithm implementing mixed
effects: A modified PLS method implementing mixed-effect model (PLSM)

Although the PLS method is successful to solve a multi-collinearity problem with HDLSS data
(n << p) in a linear model only with fixed effects, it remains limited when there exist random effects.
In order to handle multi-collinearity and HDLSS in a linear mixed-effect model, Y = XB+ZA +E, we
propose a three-step approach that employs the PLS algorithm and takes random effects into account.
In the first step, random effects are regressed out using the random-effect only model:

e Step1:Y=ZA* +E*, and residuals Y* = Y — Y are computed and stored for the next step.

Then we use the residuals Y* as response variables when constructing PLS components T from the
fixed-effect only model based on outer relations below:

e Step2: Y'=XB*+E* withX=T"Pand Y* =UQ".

In the final step, a linear mixed-effect model with a(< p) dominant PLS components T, and the
random effects is considered to predict Y. At this step, the optimal number of PLS components is
determined by the cross-validation technique:

e Step3:Y=T,B, +ZA +E.

It shows how to combine the linear mixed-effect model and the conventional PLS to implement this
method computationally. To restate, aforementioned joint modelling can be called a simple mod-
ification upon the conventional PLS algorithm by replacing the first PLS component with random
effects at the first step.

4. Simulation studies

Empirical studies using real data and simulations have an important role in investigating and val-
idating a new method. Simulations can be performed to investigate statistical properties of the new
method as to whether it satisfies the assumptions, for what range of parameter values it performs well
before it will be applied to real data (Garthwaite, 1994). In this section, we investigated the perfor-
mance of PLSM and compared it with the conventional PLS method. The prediction performance was
measured by the root mean squared error of prediction (RMSEP).

4.1. Simulation settings

Inspired by real clinical datasets to which we applied our PLSM later in Section 5, we formulated
simulation datasets with a sample size of n = 100 based on the linear mixed-effect model (2) with
various multi-collinearity structures:

1. Multi-collinear predictor variables of X = (x, ..., x,) with fixed effects.

2. A single random-effect & ~ N(0, o-i) which is independent of X.
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Table 1: Where the random error, 0. = 1, comparisons of the root mean squared error of prediction (RMSEP)
according to the five simulation scenarios at varying extents of the random-effect

Scenario  Random-effect n=100>p =30 n =100 = p =100 n =100 < p =200 n =100 << p =500
(p1,02) 0, PLS PLSM PLS PLSM PLS PLSM PLS PLSM
(0.00, 0.00) 1.27 (0.01) 1.39(0.01) | 1.60 (0.01) 1.66 (0.01) | 1.77 (0.01) 1.18 (0.01) | 1.90 (0.01) 1.88 (0.01)
(0.25,0.25) 1.27 (0.01) 1.42(0.01) | 1.60(0.01) 1.68(0.01) | 1.77 (0.01) 1.79 (0.01) | 1.89 (0.01) 1.88(0.01)
(0.80, 0.50) 1.0 1.34(0.01) 1.51(0.01) | 1.50(0.01) 1.64(0.01) | 1.64(0.01) 1.17(0.01) | 1.80(0.01) 1.81(0.01)
(0.80, 0.80) 1.33(0.01) 1.52(0.01) | 1.51(0.01) 1.70(0.01) | 1.64(0.01) 1.78(0.01) | 1.86(0.01) 1.88(0.01)
(0.87,0.82) 1.33(0.01) 1.50(0.01) | 1.48 (0.01) 1.67(0.01) | 1.60(0.01) 1.15(0.01) | 1.78 (0.01) 1.84 (0.01)
(0.00, 0.00) 1.55(0.01) 1.60(0.01) | 1.86(0.01) 1.85(0.01) | 2.00(0.01) 1.94(0.01) | 2.07 (0.01) 2.02(0.01)
(0.25,0.25) 1.56 (0.01) 1.63(0.01) | 1.85(0.01) 1.85(0.01) | 2.00(0.01) 1.95(0.01) | 2.07 (0.01) 2.02(0.01)
(0.80,0.50) 1.5 1.56 (0.01) 1.69(0.01) | 1.73(0.01) 1.82(0.01) | 1.87(0.01) 1.90 (0.01) | 2.00 (0.01) 1.97(0.01)
(0.80,0.80) 1.55(0.01) 1.70(0.01) | 1.74 (0.01) 1.87(0.01) | 1.89(0.01) 1.96 (0.01) | 2.08 (0.01) 2.04 (0.01)
(0.87,0.82) 1.53(0.01) 1.68(0.01) | 1.69 (0.01) 1.84(0.01) | 1.81(0.01) 1.90(0.01) | 1.99 (0.01) 1.98 (0.01)
(0.00, 0.00) 1.88 (0.02) 1.85(0.01) | 2.16(0.02) 2.06 (0.01) | 2.25(0.02) 2.14 (0.01) | 2.27 (0.01) 2.20 (0.01)
(0.25,0.25) 1.86 (0.02) 1.87(0.01) | 2.16(0.02) 2.07 (0.01) | 2.29(0.02) 2.16 (0.01) | 2.31(0.01) 2.23(0.01)
(0.80, 0.50) 2.0 1.85(0.02) 1.93(0.01) | 2.00(0.02) 2.03(0.01) | 2.13(0.02) 2.09 (0.01) | 2.26 (0.02) 2.17(0.01)
(0.80,0.80) 1.85(0.02) 1.96(0.01) | 1.96 (0.01) 2.04(0.01) | 2.18(0.02) 2.18 (0.01) | 2.31(0.02) 2.22(0.01)
(0.87,0.82) 1.85(0.02) 1.95(0.01) | 1.96 (0.02) 2.05(0.01) | 2.09 (0.02) 2.12(0.01) | 2.26 (0.02) 2.20 (0.01)
(0.00, 0.00) 3.98 (0.05) 3.64(0.04) | 4.39(0.06) 3.79 (0.04) | 4.29 (0.05) 3.79 (0.04) | 4.13 (0.04) 3.85(0.04)
(0.25,0.25) 3.96 (0.05) 3.67(0.04) | 4.31(0.05) 3.75(0.04) | 4.35(0.05) 3.82(0.04) | 4.19 (0.04) 3.90 (0.04)
(0.80,0.50) 5.0 3.79(0.05) 3.67(0.04) | 4.08 (0.05) 3.77(0.04) | 4.18 (0.05) 3.76 (0.04) | 4.21 (0.05) 3.82(0.04)
(0.80, 0.80) 3.83(0.05) 3.76(0.04) | 4.02(0.05) 3.77(0.04) | 4.33(0.05) 3.90(0.04) | 4.40(0.05) 3.90 (0.04)
(0.87,0.82) 3.82(0.05) 3.75(0.04) | 3.97 (0.05) 3.77 (0.04) | 4.24 (0.05) 3.89 (0.04) | 4.34(0.05) 3.84 (0.04)

(p1,p2), correlation coefficients for two blocks with AR(1)-Type variance-covariance structures, respectively;
p.the number of predictor variables;

n, the sample size;

PLS, partial least squares regression;

PLSM, modified partial least squares implementing mixed-effect;

The values in the parentheses were the standard errors.

When the PLSM method showed a significantly better result (p-value < 0.0001), red-faced type was applied.

3. Univariate response y is considered with random error € ~ N(0, o) for the ease of calculation and
interpretation.

For a sample size of n = 100, four different numbers of predictor variables p were considered:
n>p=30;n=p=100;n < p=200and n << p =500.

For simulating multi-collinearity structure, we mimicked the correlation structure captured in pre-
dictor variables of real clinical data (see Section 5). The predictor variables of this real clinical data
are the Cartesian x- and y-coordinates of 71 anthropological landmarks detected on lateral human
face. These coordinates values show the AR(1)-Type correlation structures within x-coordinates and
within y-coordinates, but no correlation between x-coordinates and y-coordinates.

Based on this observation, we develop a block-diagonal variance-covariance structure A with two
blocks, each of which has the AR(1) variance-covariance structure with auto-correlation coefficient p.
Then, predictors are generated from a multivariate normal distribution MVN(0, A). Note that the use
of the AR(1) variance-covariance structure was inspired by the simulation study of Chun and Keles
(2010). We consider a variety of multi-collinearity with the following five simulation scenarios:

1. No collinearity with (py, p2) = (0.00, 0.00).

2. Moderate collinearity with (oy, p») = (0.25,0.25).

3. High and moderate collinearity with (o1, p2) = (0.80, 0.50).
4. High collinearity with (o;, p2) = (0.80, 0.80).
5

. Very strong collinearity with (p;, ) = (0.87,0.82), similar to the sample covariance of the real
data.
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Table 2: Where the random error, o = 2, comparisons of the root mean squared error of prediction (RMSEP)
according to the five simulation scenarios at varying extents of the random-effect

Scenario  random-effect n=100> p =30 n=100=p =100 n =100 < p =200 n =100 << p =500
(01.02) oy PLS PLSM PLS PLSM PLS PLSM PLS PLSM
(0.00, 0.00) 2.03 (0.01) 2.04(0.01) | 2.34 (0.01) 2.28(0.01) | 2.43(0.01) 2.34(0.01) | 2.43(0.01) 2.39(0.01)
(0.25,0.25) 2.00 (0.01) 2.04(0.01) | 2.32(0.01) 2.28(0.01) | 2.42(0.01) 2.35(0.01) | 2.45(0.01) 2.39(0.01)
(0.80,0.50) 1.0 1.98 (0.01) 2.08 (0.01) | 2.17(0.01) 2.24(0.01) | 2.29(0.01) 2.31(0.01) | 2.40 (0.01) 2.36 (0.01)
(0.80,0.80) 1.97 (0.01) 2.10(0.01) | 2.15(0.01) 2.28(0.01) | 2.31(0.01) 2.39(0.01) | 2.49(0.01) 2.45(0.01)
(0.87,0.82) 1.95(0.01) 2.09 (0.01) | 2.11(0.01) 2.25(0.01) | 2.25(0.01) 2.35(0.01) | 2.43(0.01) 2.42(0.01)
(0.00, 0.00) 2.21(0.01) 2.18(0.01) | 2.52(0.01) 2.40(0.01) | 2.59(0.01) 2.46(0.01) | 2.57(0.01) 2.51(0.01)
(0.25,0.25) 2.20(0.01) 2.20(0.01) | 2.51(0.01) 2.41(0.01) | 2.59(0.01) 2.48(0.01) | 2.59(0.01) 2.51(0.01)
(0.80,0.50) 1.5 2.14(0.01) 2.21(0.01) | 2.34(0.01) 2.36(0.01) | 2.45(0.01) 2.42(0.01) | 2.56(0.01) 2.49(0.01)
(0.80,0.80) 2.13(0.01) 2.24(0.01) | 2.31(0.01) 2.41(0.01) | 2.48 (0.01) 2.51(0.01) | 2.64 (0.01) 2.57(0.01)
(0.87,0.82) 2.11(0.01) 2.23(0.01) | 2.27(0.01) 2.39(0.01) | 2.41(0.01) 2.47(0.01) | 2.59(0.01) 2.54(0.01)
(0.00, 0.00) 2.45(0.01) 2.37(0.01) | 2.77 (0.02) 2.58 (0.01) | 2.80(0.01) 2.62(0.01) | 2.76 (0.01) 2.67 (0.01)
(0.25,0.25) 2.41(0.01) 2.37(0.01) | 2.73(0.02) 2.57(0.01) | 2.80(0.01) 2.62(0.01) | 2.76 (0.01) 2.66 (0.01)
(0.80,0.50) 2.0 2.37(0.01) 2.41(0.01) | 2.59(0.01) 2.56(0.01) | 2.70(0.01) 2.61(0.01) | 2.78 (0.01) 2.65(0.01)
(0.80,0.80) 2.33(0.01) 2.42(0.01) | 2.54 (0.01) 2.59(0.01) | 2.71(0.01) 2.67 (0.01) | 2.87 (0.02) 2.73(0.01)
(0.87,0.82) 2.32(0.01) 2.41(0.01) | 2.49 (0.01) 2.56(0.01) | 2.61(0.01) 2.62(0.01) | 2.80(0.01) 2.69 (0.01)
(0.00, 0.00) 4.30(0.05) 3.93(0.04) | 4.69(0.05) 4.06 (0.04) | 4.68(0.05) 4.14(0.04) | 438 (0.04) 4.11(0.04)
(0.25,0.25) 4.30(0.05) 3.97(0.04) | 4.64(0.05) 4.05(0.04) | 4.60(0.05) 4.08 (0.04) | 4.42(0.04) 4.12(0.04)
(0.80,0.50) 5.0 4.19(0.04) 4.05(0.04) | 4.44 (0.05) 4.09 (0.04) | 4.53(0.05) 4.09 (0.04) | 4.58 (0.05) 4.15(0.04)
(0.80,0.80) 4.04 (0.04) 3.97(0.04) | 4.40(0.05) 4.15(0.04) | 4.58 (0.05) 4.15(0.04) | 4.68 (0.05) 4.14(0.04)
(0.87,0.82) 4.02(0.04) 3.97(0.04) | 424 (0.04) 4.06 (0.04) | 4.54(0.05) 4.17 (0.04) | 4.74 (0.05) 4.20 (0.04)

(p1,p2), correlation coefficients for two blocks with AR(1)-Type variance-covariance structures, respectively;
p.the number of predictor variables;

n, the sample size;

PLS, partial least squares regression;

PLSM, modified partial least squares implementing mixed-effect;

The values in the parentheses were the standard errors.

When the PLSM method showed a significantly better result (p-value < 0.0001), red-faced type was applied.

For simplicity, we assumed that only two predictors have significant effects (namely coefficients, 2
and 0.5), each of which was affiliated to each block individually. For the rest of predictors, coefficients
were set at 0. A random-effect with four levels was generated for different values of o, = 1, 1.5, 2,
and 5. Finally, we generated responses y under the linear mixed-effect model, y = X + Za + €, where
oc.=1or?2.

For each simulation setting, we performed 1,000 runs of simulations, and computed the root mean
squared error of prediction (RMSEP) as a measure for the prediction performance. We also used the
RMSEP to compare the proposed PLSM method against the conventional PLS method. In simulation
studies, two PLS components were identified for both PLS and PLSM. The R packages mnormt and
pls were used for generation and analysis of simulation data in the R environment (Azzalini et al.,
2021; Liland et al., 2021; R Development Core Team, 2021).

4.2. Results and discussion

In the simulation results (Tables 1 and 2), we first observed that PLSM showed significantly better
performance than the conventional PLS as the random-effect becomes large. However, this pattern
weakened when multi-collinearity becomes strong, and reversed with small random-effect and strong
multi-collinearity. Our conjecture for this case was that the control of severe multi-collinearity might
be more crucial to prediction than the handling of a random-effect. Thus, PLSM seems less beneficial
than PLS when multi-collinearity is very strong and random-effect is not large. We cautiously expect
that PLSM may perform better than the conventional PLS if the model includes a larger number of
random effects.

Second, the PLSM method demonstrated a considerable benefit compared to PLS when the num-
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(A) Skeletal landmark points (B) Soft-tissue lanark points

Predictor variables

Response variables

Y matrix

X matrix

Random factor
A quality factor

Bone measurements l

f

Face change

o variables SURGERYy

Soft tissue measurements
64 variables

\
Surgical skeletal movement l
78 variables

Figure 1: The bone (A) and soft-tissue landmark points (B). There were 220 predictor- and 64 response variables.
A random factor had two levels of a quality factor (C).

(C) Variables used in the clinical study

ber of predictor variables (p) increased. Especially with p = 500, PLSM showed significantly lower
prediction errors than PLS did. Third, compared to PLS, PLSM showed more accurate prediction
when the random error was large, namely o = 2 than when o = 1.

In summary, the PLSM results showed better predictive performance than the conventional PLS
method did 1) when the random-effect was greater, 2) the number of predictors is larger, especially
exceeds the sample size, 3) the multi-collinearity is not so strong, and 4) the random noise is consid-
erable.

As a limitation, the simulation of the current study set up a univariate response variable. It should
be noted that results for multivariate response variables could have been different.
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Figure 2: Scattergrams and 95% confidence ellipses for the prediction errors in the upper- and lower lip position.
The errors were obtained from the PLS (blue) and PLSM (red) methods. The plots indicated that the PLS method
demonstrated larger prediction errors than the PLSM prediction did.

5. Clinical data application

In order to illustrate our new proposal, we applied PLSM to a real clinical dataset, to which the
conventional PLS method was previously applied (Suh et al., 2012; Lee et al., 2014; Suh et al., 2019).
We compared the prediction accuracy between PLSM and PLS. Some benefits of PLSM over the
conventional PLS methods are also discussed.

5.1. Characteristics of the data structure and the formulation of the prediction study

The dataset consisted of the cephalometric measurements for n = 318 subjects who underwent
facial cosmetic surgeries. Figure 1(A) and (B) illustrate the anthropological landmarks detected on
lateral human face images for bones (39 landmark points) and soft tissues (32 landmark points),
respectively. All variables indicate the cartesian coordinates in the horizontal-(x-axis) and vertical
(y-axis) directions. The number of predictor variables was 220: 142 pre-existing characteristics of
bones and soft-tissues; and 78 variables indicating the amount surgical skeletal repositioning. The
face change after surgery was characterized with 64 soft-tissue response variables.

We considered a quality factor with two categorical levels, which can accommodate the surgeon-
to-surgeon variability with a 2-surgeon case, the procedure-to-procedure variability with two types
of minute surgical procedures, or the surgeons’ preference to two surgical procedures (Figure 1(C)).
This factor was assumed to have a random-effect because the effect of its particular levels is not of as
much interest to us as is the amount of variation in the response that can be attributed to its different
levels. Note that the optimal number of PLS components was determined by the leave-one-out cross-
validation method (LOOCYV) and the PLS model with 30 components was selected. The test error was
also calculated using LOOCV.

5.2. Results and discussion

When predicting the face shape after surgery, it is often of interest to represent the pattern of errors
in a graphic fashion (Donatelli and Lee, 2013). For display purpose, we reported the prediction errors
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for each patient only at the upper- and lower lip position (Figure 2). A negative value of the error
indicates that the predicted value is more posterior in the x-axis or more superior in the y-axis when
compared to the actual/true value. The contours stand for the 95% confidence ellipse of the prediction
errors, each of which satisfies (x — )" ' (x — p) < X%_OS(Z) where x is the 2-dimensional (x- and y-
axes) vectors for the errors; u is the mean vector for x; £ = (071, 072; p12) is the covariance matrix; and
X2(df) is the upper 100(1 — @)™ percentile of the chi-square distribution with df degrees of freedom
(Johnson and Wichern, 2007).

In the Figure 2, scattergrams and 95% confidence ellipses demonstrated that the pattern of predic-
tion error is more favorable for PLSM than for PLS. The size of the 95% confidence ellipse for the
PLS method was greater than that for PLSM. We also observed that the shape of the confidence ellipse
was closer to a circle for PLSM (92 = —0.12 and —0.08 at upper and lower lip positions, respectively)
than for PLS (0, = —0.44 and —0.59) while both ellipses were located almost at the origin (& = 0). It
might indicate that PLSM deals with the correlation structure between x- and y-axes better than PLS
although a thorough investigation is further needed.

Even if the sample size in the real clinic dataset was relatively small, the PLSM method appeared
suitable for exploring relationships between multiple predictor and response variables with a random
factor. We hope that this method would be valuable in numerous situations where variables are highly
inter-correlated within an individual subject or each characteristic group.

6. Concluding remarks

A feasible computational method was developed to formulate a modified partial least squares re-
gression by relating it to the mixed-effect analysis. An advantage of the proposed PLSM model might
be its ability to handle multivariate responses in a serial longitudinal data consisted of repeated mea-
surements and/or to take the random-effect of a randomized block design into account. The proposed
PLSM would be particularly beneficial when a random-effect exists and its effect is conspicuous;
the number of predictors is relatively greater than the sample size; the multi-collinearity is weak or
moderate; and/or the random error is large.
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