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Abstract
Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue

in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its esti-
mate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving
average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more
flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized
moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with
overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal
count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy
data are analyzed using our proposed model.

Keywords: overdispersion, ARMA Cholesky decomposition, positive-definite, longitudinal count
data, high dimensionality

1. Introduction

Subjects are repeatedly observed over time in longitudinal studies; therefore, longitudinal data have
between-subject variation as well as serial correlation of repeated outcomes (within-subject variation)
(Diggle et al., 2002). These variations should be considered for correct estimation of covariate effects.
In addition, the variations can be modeled through a covariance matrix.

Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs)
is a big issue in analysis of longitudinal categorical data (Breslow and Clayton, 1993) because the
covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness (Lee et
al., 2012, Lee et al., 2017). To avoid these constraints, the random effects covariance is assumed to
be a simple structured matrix such as AR(1). However, it can be a very strong assumption, and this
can lead to bias in estimates. To remove these obstacles, joint mean-covariance modeling approaches
have been proposed such as modified Cholesky decomposition (MCD) (Lee, 2013; Lee and Sung,
2014; Pan and MacKenzie, 2003; Pourahmadi, 1999, 2000), moving average Cholesky decomposition
(MACD) (Lee and Yoo, 2014; Zhang and Leng, 2012) and autoregressive-moving average Cholesky
decomposition (ARMACD) (Choi and Lee, 2017; Han and Lee, 2016; Lee et al., 2017; Nam and Lee,
2017).

In the MCD, precision matrix is decomposed to generalized autoregressive parameters (GARPs)
and innovation variances (IVs) which are modeled using linear and loglinear models, respectively
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(Pourahmadi, 1999, 2000). Therefore, the number of unknown elements in the precision matrix is
reduced and the IVs are positive. In the MACD, covariance matrix is decomposed into generalized
moving average parameters (GMAPs) and IVs. Similar to the MCD, the unknown elements of the
covariance matrix is reduced, and the GMAPs and IVs are modeled using linear and loglinear models,
respectively. The ARMACD combines the two Cholesky decompositions to model the covariance
matrix (Lee et al., 2017). Using the ARMACD, the covariance matrix has an autoregressive mov-
ing average (ARMA) structure. The ARMACD is a more flexible decomposition of the covariance
matrix and factors the covariance matrix to GARPs, GMAPs, and IVs. In the above decompositions,
all positive IVs guarantee the positive-definiteness of the estimated covariance matrix. In this paper,
we exploit the ARMACD to model random effects covariance matrix in the GLMMs to analyze lon-
gitudinal count data. The ARMACD also allows flexible nonstationary and heteroscedastic random
effects covariance matrix that is positive definite.

In this paper, we analyze longitudinal count data with overdispersion using GLMMs. To ana-
lyze longitudinal count data, Poisson loglinear mixed models (PLMMs) are typically used (Choi and
Lee, 2017). In the models, identical mean and variance are assumed (Agresti, 2002). However, the
variance is significantly larger than the mean in many cases. The greater variability than predicted
by the Poisson models reflects overdispersion (Molenberghs et al., 2007). To solve the overdisper-
sion problem, random effects in the PLMMs are considered to analyze longitudinal count data (Thall
and Vail, 1990). However, this approach cannot accommodate the hierarchies of longitudinal struc-
ture, which typically are presented in longitudinal data. For longitudinal overdispersed count data
especially including autoregressive structure, Jowaheer and Sutradhar (2002) proposed generalized
estimating equations (GEE) for regression parameters and the overdispersion parameter. Booth et al.
(2003) extended the negative binomial loglinear model using random effects in the linear predictor
for longitudinal overdispersed count data. Molenberghs et al. (2007) proposed a GLMM for longi-
tudinal count data using gamma and normal types random effects. The model produces the standard
negative-binomial (gamma random effects) and Poisson-normal (normal random effects) models as a
special cases. In this paper, we also proposed negative binomial loglinear mixed models with general
random effects covariance matrix using the ARMACD.

The outline of the paper is as follows. In Section 2, we propose modelling of the random effects
covariance matrix using ARMACD in negative binomial loglinear mixed model and calculate maxi-
mum likelihood estimation. In Section 3, we apply our proposed models in epilepsy data and compare
Poisson case. Finally, we summarize and proposed future work in Section 4.

2. Negative binomial loglinear mixed model

We now propose negative binomial loglinear mixed models for longitudinal overdispersed count data
using the ARMACD.

2.1. Proposed model

Let yi = (yi1, yi2, . . . , yini )
T be the response vector of longitudinal count data where yi j is the count

response for subject i (i = 1, . . . ,N) at time j ( j = 1, . . . , ni). We also assume that the responses for
different subjects are conditionally independent given random effects. We now assume the following
model,

yi j ∼ NB
(
µi j(bi j), ν−1

)
,

log(µi j(bi j)) = xT
i jβ + bi j,
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where µi j(bi j) = E(yi j|xi j, bi j), β is a coefficients vector of xi j, bi = (bi1, . . . , bini )
T ∼ N(0,Σi) is a

vector of the random effect in the model, and ν is overdispersion parameter such that var(yi j|xi j, bi j) =
µi j(bi j) + ν(µi j(bi j))2. Note that the distribution of yi j conditional bi j has a negative binomial dis-
tribution which accommodate the overdispersion indexed by ν, and that the conditional variance of
yi j is greater than the conditional mean. Therefore, our proposed model accommodates longitudinal
overdispersed count data.

Using the ARMACD, we assume the ARMA structure of the random effects covariance matrix
which was used in analysis of longitudinal binary data (Lee et al., 2017) and longitudinal Poisson
data (Choi and Lee, 2017). The decomposition is given by

bi j =

j−1∑
k=1

ϕi jkbik +

j−1∑
k=1

li jkeik + ei j, (2.1)

where ei = (ei1, ei2, . . . , eini )
T indep.∼ N(0,Di) with Di = diag(σ2

i1, . . . , σ
2
ini

), ϕi jk are GARPs, li jk are
GMAPs, and σ2

i j are IVs.
Using matrix form, (2.1) is reexpressed as follows

Tibi = Liei, (2.2)

where Ti is a unique lower triangular matrix having ones on its diagonal and −ϕi jk at its ( j, k)th element
for j < k. Similarly, Li is also a unique lower triangular matrix having ones on its diagonal and li jk at
its ( j, k)th element for j < k. Taking variance in (2.2), we have

TiΣiT T
i = LiDiLT

i . (2.3)

Note that Σi is decomposed to the GARPs, the GMAPs, and the IVs which are constrained and inter-
pretable parameters ϕi jk, li jk, and logσ2

i j. In addition, the parameters ϕi jk, li jk, and logσ2
i j are modeled

using the following linear and loglinear models:

ϕi jk = wT
i jkα, li jk = zT

i jkγ, logσ2
i j = hT

i jλ, (2.4)

where α and γ are vectors of unknown dependence parameters, λ is the vector of unknown variance
parameters, and wi jk, zi jk, and hi j are time and/or subject-specific design vectors. We note that wi jk and
zi jk are covariate design vectors controlling the time order of the model and the correlation between
responses. As a result, the random effects covariance matrix can be nonstationary and heteroscedastic
depending on covariates.

Note that IVs are always positive using the loglinear model in (2.4). Therefore, diagonal elements
of Di in (2.1) are all positive and this result guarantees that Σi is positive definite by Theorem 1 in Lee
et al. (2017). We also know that the T and L in (2.2) are identifiable using following theorem:

Proposition 1. Matrices T and L in (2.2) are unique when Σ is positive definite and the order of
ARMA structure is determined.

Proof: From result in Pourahmadi (2011), matrix T is unique. Now we claim that matrix L is unique
given matrix T . Since Σ is positive definite, TiΣiTi is also positive definite. Then TΣT T can be
decomposed by the standard Cholesky decomposition:

TΣT T = CCT , (2.5)
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where C = (ci j) is a unique lower triangular matrix. Let A = diag(c11, . . . , cTT ). Then (2.5) can be
reexpressed by

TΣT T = CA−1AAA−1CT

= LAALT

= LDLT ,

where L = CA−1 and L is a unique lower triangular matrix, and D = AAT . Thus, L are uniquely
defined given T . �

When the series is partly autoregressive and partly moving average, the ARMA models are par-
simonious compared to the AR or the MA models (Judge et al., 1980). Similarly, the linear and
loglinear models for the GARPS/GMAPs and IVs in the ARMACD enables reasonable interpretation,
easy computation, and stable estimation of the parameters (Lee et al., 2017).

2.2. Maximum likelihood estimation

In this section, we derive maximum likelihood estimate of parameters for the proposed model using
the likelihood function. Let θ = (β, ν, α, γ, λ)T where θ consists of coefficients of covariates, dispersion
parameter, and parameters of random effects covariance matrix. Then the marginal likelihood function
is the integral of a product of negative binomial densities over random effects,

L(θ; y) =
N∏

i=1

∫
L(θ; yi, bi) f (bi)dbi, (2.6)

where f (bi) is the multivariate normal distribution with mean 0 and variance covariance matrix Σi and

L(θ; yi, bi) =
ni∏
j=1

Γ(ν−1 + yi j)
Γ(ν−1)yi j!

(
1

1 + νµi j(bi j)

)ν−1 (
νµi j(bi j)

1 + νµi j(bi j)

)yi j

.

Log-likelihood function is calculated as

log L(θ; y) =
N∑

i=1

log
∫

exp

 ni∑
j=1


yi j−1∑
l=0

log
(
ν−1 + l

)
−

yi j−1∑
l=0

log(l + 1)

+ yi j log ν + yi j log µi j(bi j) −
(
ν−1 + yi j

)
log

(
1 + νµi j(bi j)

) }]
f (bi)dbi.

We factor Σi using ARMA Cholesky decomposition, then we can represent f (bi) as

f (bi) =(2π)−
ni
2

 ni∏
j=1

σ2
i j

−
1
2

exp
(
−1

2
bi

T Ti
T L−T

i Di
−1L−1

i Tibi

)
.
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Maximum Likelihood estimator is derived by solving the following equations:

∂logL(θ; y)
∂β

=

N∑
i=1

1
L(θ; yi)

∫
L(θ; yi, bi)

 ni∑
j=1

{(
yi j − µi j(bi j)

) xi j

1 + νµi j(bi j)

} f (bi)dbi, (2.7)

∂logL(θ; y)
∂αl

=

N∑
i=1

1
L(θ; yi)

∫
L(θ; yi, bi) f (bi)

{
−1

2
bi

T
(
∂T T

i

∂αl
L−T

i D−1
i L−1

i Ti + T T
i L−T

i D−1
i L−1

i
∂Ti

∂αl

)
bi

}
dbi, (2.8)

∂logL(θ; y)
∂γl

=

N∑
i=1

1
L(θ; yi)

∫
L(θ; yi, bi) f (bi)

{
−1

2
bi

T
(
T T

i

∂L−T
i

∂γl
D−1

i L−1
i Ti + T T

i L−T
i D−1

i

∂L−1
i

∂γl
Ti

)
bi

}
dbi, (2.9)

∂logL(θ; y)
∂λl

=

N∑
i=1

1
L(θ; yi)

∫
L(θ; yi, bi)

−1
2

ni∑
j=1

hi jl −
1
2

bi
T Ti

T L−T
i
∂Di

−1

∂λl
L−1

i Tibi

 × f (bi)dbi, (2.10)

∂logL(θ; y)
∂ν

=

N∑
i=1

1
L(θ; yi)

∫
L(θ; yi, bi)

 ni∑
j=1


yi j−1∑
l=0

− 1
ν(1+νl)

+
1
ν2 log(1+νµi j(bi j))

yi j−µi j(bi j)
ν(1+νµi j(bi j))


 f (bi)dbi, (2.11)

where L(θ; yi) =
∫

L(θ; yi, bi) f (bi)dbi,

∂Ti

∂αa
=



0 0 0 · · · 0
−wi21a 0 0 · · · 0
−wi31a −wi32a 0 · · · 0
...

...
...

. . .
...

−wini1a −wini2a −wini3a · · · 0


,

∂Li

∂γa
=



0 0 0 · · · 0
zi21,a 0 0 · · · 0
zi31,a zi32 0 · · · 0
...

...
...

. . .
...

zini1,a zini2,a zini3,a · · · 0


,

∂D−1
i

∂λl
= diag

− 1
σ2

i1

hi1l, . . . ,−
1
σ2

ini

hinil

 .
We can solve numerically the estimating equations (2.7)–(2.11) using quasi-Newton algorithm.

The form is represented by following equations.

θ(c+1) = θ(c) +
[
H

(
θ(c); y

)]−1 ∂log L(θ; y)
∂θ(c) ,

where H(θ(c); y) is a consistent and empirical estimator of the information matrix after convergence.
It is given by

H(θ; y) =
N∑

i=1

∂log L(θ; yi)
∂θ

∂log L(θ; yi)
∂θT .

When this algorithm converged, the inverse of H(θ; y) can be the large-sample variance-covariance
matrix of the parameter estimates.

Note that the solution of the equations (2.7)–(2.11) is computationally intensive because the high-
dimensional random effects are integrated out. Quasi-Monte Carlo (QMC) approximation is used
to compute integrations of the high-dimensional random effects in (2.6) (Lee et al., 2012; Nieder-
reiter, 1992; Pan and Thompson, 2007). The QMC works like the regular Monte Carlo method but
instead of using a uniformly and randomly distributed set of points, uniformly distributed determin-
istic sequences, called low discrepancy sequences, are utilized. The QMC method seems to perform
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better in high-dimensional random effects than either Gauss Hermite or Monte Carlo methods. The
approximation of (2.6) is given by

L(θ : y) ≈
N∏

i=1

1
M

M∑
l=1

ni∏
j=1

Γ
(
ν−1 + yi j

)
Γ
(
ν−1) yi j!

 1

1 + νµi j

(
b(l)

i j

) ν
−1  νµi j

(
b(l)

i j

)
1 + νµi j

(
b(l)

i j

) 
yi j

, (2.12)

where the set (b(1)
i , . . . , b(M)

i ) is a subsequence of a low-discrepancy sequence with sample size of
K. In Section 3, we used an R function, rnorm.sobol(), which is one of R function to make a low-
discrepancy, in the library fOptions (Wuertz, 2005) to get the set. The QMC in (2.7)–(2.11) are also
used to the approximation in (2.12).

3. Real data analysis

3.1. Data description

We next analyzed a data set from epilepsy study using our proposed model. The data set was first
reported in a paper by Faught et al. (1996) and was analyzed in Molenberghs and Verbeke (2005) and
Choi and Lee (2017). The study was a prospective open-label randomized non-comparative parallel
study to compare placebo and a new anti-epileptic drug (AED), in combination with one or two other
AED’s. To stabilize the effect of AED, the number of seizures was collected for 12-week baseline
period. A total 89 subjects with epilepsy were randomly assigned to one of the two groups (45
subjects for placebo and 44 subjects for AED treatment groups). The number of seizures was again
counted over 16 weeks. The objective of this study was if the new AED has an effect on reducing the
number of epileptic seizures.

Figure 1 shows average seizures for the two groups over week. There were no differences of
average seizures between two groups until eighteen weeks. In week 19, there was extreme value in
the placebo group, which is because very few observations were available.

We let response variable Y be the number of seizure and we included type of treatment (Trt = 0
for placebo group, Trt = 1 for AED group) to examine the effect of AED. The week number was
standardized ((week − 14)/27) and interaction effect between treatment and week number was also
included.

3.2. Model fit

We analyzed epilepsy study data using 4 Poisson linear mixed models (PLMMs) (Choi and Lee, 2017)
and 6 negative binomial loglinear mixed models (NBLMMs) specified in Table 1.

We use the following notation: P-ARMA(?, ?) and NB-ARMA(?, ?) where P and NB respectively
indicate Poisson linear mixed and negative binomial loglinear mixed models, and the ’?’ correspond
to the polynomial in the GARP and GMAP respectively or the AR and MA order, respectively. So
an NB-ARMA(1, 1) would correspond to a heteroscedastic ARMA(1, 1) model with IV depending on
type of treatment and NB-ARMA(L, L) would correspond to a heteroscedastic ARMA model with
a linear in time difference for the GARP and GMAP. To find MLEs of each parameters, we used a
QMC method that is explained in Subsection 2.2. The quasi-Newton algorithm was iterated until sum
of absolute differences is less than 10−4.

We compared the ten models using maximized loglikelihoods, Akaike information criteria (AIC)
and Bayesian information criteria (BIC), presented in Table 2, respectively. Overall, negative binomial
loglinear mixed models had much lower AICs and BICs than Poisson models. Therefore, we focused
on the negative binomial loglinear mixed models.
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Figure 1: Average of number of seizure changes over time.

Table 1: Models for ϕit j, lit j, and logσ2
it for 4 PLMMs and 6 NBLMMs

Model GARP GMAP IV
P-ARMA(1, 0) ϕit j = α0I(|t− j|=1) logσ2

it = λ0 + λ1Trti
Poisson P-ARMA(2, 0) ϕit j = α0I(|t− j|=1) + α1I(|t− j|=2) logσ2

it = λ0 + λ1Trti
model P-ARMA(1, 1) ϕit j = α0I(|t− j|=1) lit j = γ0I(|t− j|=1) logσ2

it = λ0 + λ1Trti
P-ARMA(2, 1) ϕit j = α0I(|t− j|=1) + α1I(|t− j|=2) lit j = γ0I(|t− j|=1) logσ2

it = λ0 + λ1Trti
NB-ARMA(1, 0) ϕit j = α0I(|t− j|=1) logσ2

it = λ0 + λ1Trti

Negative NB-ARMA(2, 0) ϕit j = α0I(|t− j|=1) + α1I(|t− j|=2) logσ2
it = λ0 + λ1Trti

binomial NB-ARMA(1, 1) ϕit j = α0I(|t− j|=1) lit j = γ0I(|t− j|=1) logσ2
it = λ0 + λ1Trti

model NB-ARMA(2, 1) ϕit j = α0I(|t− j|=1) + α1I|t− j|=2 lit j = γ0I(|t− j|=1) logσ2
it = λ0 + λ1Trti

NB-ARMA(2, 2) ϕit j = α0I(|t− j|=1) + α1I|t− j|=2 lit j = γ0I(|t− j|=1) + γ1I|t− j|=2 logσ2
it = λ0 + λ1Trti

NB-ARMA(L,L) ϕit j = α0 + α1 |wi j − wik | lit j = γ0 + γ1 |wi j − wik | logσ2
it = λ0 + λ1Trti

PLMMs = Poisson loglinear mixed models; NBLMMs = negative binomial loglinear mixed models; GARPs = generalized
autoregressive parameter; GMAP = generalized moving average parameter; IV = innovation variance; ARMA = autoregres-
sive moving average.

We compared nested models (NB-ARMA(1, 0) vs NB-ARMA(2, 0), NB-ARMA(1, 0) vs NB-
ARMA(1, 1), NB-ARMA(1, 1) vs NB-ARMA(2, 1), NB-ARMA(2, 0) vs NB-ARMA(2, 1), and NB-
ARMA(2, 1) vs NB-ARMA(2, 2)) using likelihood ratio test (Table 3). It indicates that NB-ARMA(2, 1)
was the best model among above models. We also compared the above models and NB-ARMA(L, L)
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Table 2: Log likelihood, AIC and BIC for the models

P-ARMA(1, 0) P-ARMA(2, 0) P-ARMA(1, 1) P-ARMA(2, 1)
Max. loglik. −2945.865 −2940.188 −2911.220 −2892.202

Poisson AIC 5905.730 5896.376 5838.440 5802.404
BIC 5923.150 5916.285 5858.349 5824.802

NB-ARMA(1, 0) NB-ARMA(2, 0) NB-ARMA(1, 1) NB-ARMA(2, 1)

Negative Max. loglik. −2768.272 −2765.395 −2763.373 −2759.630

binomial AIC 5552.544 5548.790 5544.746 5539.260
BIC 5572.453 5571.188 5567.144 5564.146

NB-ARMA(2, 2) NB-ARMA(L, L)

Negative Max. loglik. −2758.204 −2758.197

binomial AIC 5538.408 5538.394
BIC 5565.783 5565.769

AIC = Akaike information criteria; BIC = Bayesian information criteria; ARMA = autoregressive moving average.

Table 3: Likelihood ratio tests for negative binomial models

Models X2 df p-value
NB-ARMA(1, 0) vs NB-ARMA(2, 0) 5.754 1 0.017
NB-ARMA(1, 0) vs NB-ARMA(1, 1) 9.798 1 0.002
NB-ARMA(1, 1) vs NB-ARMA(2, 1) 7.486 1 0.006
NB-ARMA(2, 0) vs NB-ARMA(2, 1) 11.530 1 0.001
NB-ARMA(2, 1) vs NB-ARMA(2, 2) 2.852 1 0.091

df = degrees of freedom; ARMA = autoregressive moving average.

Table 4: Maximum likelihood estimates for NB-ARMA(2, 1), NB-ARMA(2, 2), and NB-ARMA(L, L) with
standard errors in the parentheses

NB-ARMA(2, 1) NB-ARMA(2, 2) NB-ARMA(L, L)
Mean parameter
Intercept (β0) 0.222 (0.326) 0.197 (0.421) 0.196 (0.357)
Treatment (β1) 0.368 (0.351) 0.379 (0.376) 0.379 (0.401)
Week (β2) −1.582 (0.839) −1.656 (1.148) −1.657 (0.938)
Week×Treatment (β3) 1.166 (0.854) 1.221 (0.962) 1.222 (1.017)
ν 0.278∗ (0.025) 0.275∗ (0.034) 0.275∗ (0.024)
GARP/GMAP
α0 1.512∗ (0.413) 1.172∗ (0.434) −0.839∗ (0.425)
α1 −0.506 (0.410) −0.163 (0.428) 0.255 (0.538)
γ0 −0.731 (0.292) −0.250 (0.535) 1.270∗ (0.210)
γ1 −0.269 (0.235) 13.012 (9.686)
IV
λ0 −1.597∗ (0.365) −1.669∗ (0.553) −1.669∗ (0.401)
λ1 0.499 (0.267) 0.510 (0.367) 0.510 (0.727)

∗ indicates significance with 95% confidence level.
ARMA = autoregres- sive moving average; GARPs = generalized autoregressive parameter; GMAP = generalized moving
average parameter; IV = innovation variance.

using AIC and BIC which are presented in Table 2. It indicates NB-ARMA(2, 1), NB-ARMA(2, 2),
and NB-ARMA(L, L) were competitive. Therefore, we focused on the three models.

Table 4 provides maximum likelihood estimates of the parameters for NB-ARMA(2, 1), NB-
ARMA(2, 2), and NB-ARMA(L, L). The parameters of coefficients of covariates in the three mod-
els were not significant. Thus, treatment did not appear to differentially impact the mean between
placebo and treatment groups. In NB-ARMA(2, 1), overdispersion parameter was significant. It indi-
cates that data were overdispersed compared to mean (v̂ar = µ̂(1 + 0.278µ̂) in NB-ARMA(2, 1)). The
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AR(1) parameters in the GARPs and the intercept parameters in the IVs were significant (α̂0 = 1.512,
SE = 0.413; λ̂0 = −1.597, SE = 0.365). However, the AR(2) and MA(1) parameters were not
significant. Also, the coefficients of treatment in the IVs was not significant. In NB-ARMA(2, 2),
the parameter estimates were similar to those in NB-ARMA(2, 1). In NB-ARMA(L, L), the intercept
parameters in the GARPs and GMAPs were significant. However, the coefficients of treatment were
not significant. Similarly, the intercept parameter in the IVs was significant and the coefficient of
treatment in the IVs was not significant.

4. Conclusion

We have proposed negative binomial loglinear mixed models to analyze longitudinal count data. The
models account for the within-subject variation and between-subject variance using an ARMA ran-
dom effects covariance matrix. The ARMA Cholesky decomposition (ARMACD) factors the random
effects covariance matrix to GARPs, GMAPs and IVs. The GARPs, GMAPs, and IVs are modeled
using linear and loglinear models which solve the positive definiteness constraint of the covariance
matrix. In addition, the ARMACD creates a more flexible decomposition of the covariance matrix
than existing decompositions. The estimation of parameters in the proposed models were calculated
using a quasi-Newton algorithm. Calculation of the integrations in likelihood and derivatives was
conducted by quasi Monte Carlo integration.

Epileptic seizure data were analyzed by Poisson/negative binomial loglinear mixed models with
several structures of the random effects covariance matrix. The random effects covariance matrices
with an ARMA(2, 1), an ARMA(2, 2), and an ARMA linear in time difference were competitive. The
result shows that the parameters of coefficients of covariates in the models were not significant.
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