• Title/Summary/Keyword: microglia cells

Search Result 197, Processing Time 0.027 seconds

Synthetic Wogonin Derivatives Suppress Lipopolysaccharide-Induced Nitric Oxide Production and Hydrogen Peroxide-Induced Cytotoxicity

  • Chun Wanjoo;Lee Hee Jae;Kong Pil-Jae;Lee Gun Hee;Cheong Il-Young;Park Haeil;Kim Sung-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.216-219
    • /
    • 2005
  • Wogonin (5,7-dihydroxy-8-methoxyflavone) has been reported to exhibit a variety of biological properties including anti-inflammatory and neuroprotective functions. In this study, biological activities of diverse synthetic wogonin derivatives have been evaluated in two experimental cell culture models. Inhibitory activities of wogonin derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells and on hydrogen peroxide ($H_{2}O_2$)-induced neuronal cell death in SH-SY5Y human neuroblastoma were examined. Wogonin derivatives such as WS2 and WS3 showed more potent suppressive activities on LPS-induced NO production and $H_{2}O_2$-induced cytotoxicity than wogonin itself. In addition, thiol substitution played a minor role in enhancing the activities of the derivatives. These findings may contribute to the development of novel anti-inflammatory and neuroprotective agents derived from wogonin.

Effect of Extraction Ethanol Concentration on Antioxidant and Anti-Inflammatory Activity of 30-Year-Old and 120-Year-Old Dangyuja (Citrus maxima (Burm.) Merr.)

  • Lee, Sung-Gyu;Lee, Dongsup;Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • Dangyuja (Citrus maxima (Burm.) Merr.) is a native fruit of great economic importance in Jeju island in Korea. To provide experimental evidence for the antioxidant and anti-inflammation properties on extraction ethanol concentration of Dangyuja, 2 cultivars, including 30-year-old and 120-year-old were evaluated. 30-year-old Dangyuja 50%, 70% ethanol extracts had the highest polyphenol and flavonoid content, and the strongest 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. To investigate the anti-inflammatory activity of Dangyuja ethanol extracts, we used BV-2 microglia cells and induced inflammation using lipopolysaccharide (LPS). Then, we measured levels of inflammatory mediators as nitric oxide (NO). Among the 6 extracts, 30-year-old Dangyuja 50% ethanol extracts show the highest anti-inflammatory activity. The results suggest that 30-year-old Dangyuja 50% ethanol extracts provides significant health benefits and may be used for developing new functional materials.

Translocator protein (TSPO): the new story of the old protein in neuroinflammation

  • Lee, Younghwan;Park, Youngjin;Nam, Hyeri;Lee, Ji-Won;Yu, Seong-Woon
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein.

Modulation of Suppressive Activity of Lipopolysaccharide-Induced Nitric Oxide Production by Glycosidation of Flavonoids

  • Kwon, Yong-Soo;Kim, Sung-Soo;Sohn, Soon-Joo;Kong, Pil-Jae;Cheong, Il-Young;Kim, Chang-Min;Chun, Wan-Joo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.751-756
    • /
    • 2004
  • Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.

The role of neuroinflammation on the pathogenesis of Parkinson's disease

  • Chung, Young-Cheul;Ko, Hyuk-Wan;Bok, Eu-Gene;Park, Eun-Soo;Huh, Sue-Hee;Nam, Jin-Han;Jin, Byung-Kwan
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.225-232
    • /
    • 2010
  • Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.

Screening of 56 Herbal formulas covered by the National Health Insurance Service on Dementia-related Factors (국민 건강보험 급여 한약 처방 56종의 치매 주요 생리지표 및 신경세포 변화에 대한 효능 비교 연구)

  • Lim, Hye-Sun;Kim, Yu Jin;Kim, Yoon ju;Kim, Bu-Yeo;Jeong, Soo-Jin
    • The Journal of Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the effects of 56 herbal formulae covered by the National Health Insurance Corporation (NHIC) on dementia-related biomarkers and neuronal cell changes. Methods: The 56 herbal formulae were extracted with 70% ethanol at $100^{\circ}C$ for 2 h. The antioxidant properties was measured by radical scavenging assay using ABTS+ radical. The acetylcholinesterase (AChE) activity was tested by Ellman's assay and $amyloid-{\beta}$ ($A{\beta}$) aggregation was determined using fluorescence method. To estimate the inhibitory effects of herbal formulae on neuronal cell death and inflammation using HT22 hippocampal cells and BV-2 microglia, respectively. Results: Among the 56 herbal formulae, Dangguiyukhwangtang, Banhasasimtang, Samhwangsasimtang, Cheongwiesan, Hwangryunhaedoktang, Banhabaekchulchunmatang, Jaeumganghwatang, Cheongseoikgitang, and Hoechunyanggyuksan has a significant inhibitory effects on acetylcholinesterase (AChE) activity. Doinseunggitang and Samhwangsasimtang exerted the effect on the inhibition of $amyloid-{\beta}$ ($A{\beta}$) aggregation. Additionally, 10 herbal formulae affected AChE and $A{\beta}$ aggregation revealed antioxidant activity as well as neuroprotective and anti-neuroinflammation effects in neuronal cell lines. Conclusions: 10 herbal formulae that have been shown to be effective against the major dementia markers have been shown to have antioxidant activity, neuronal cell protection and inhibition of brain inflammation. Further investigation of these herbal formulae will need to be validated in dementia animal models.

Phytochemical Constituents of Capsella bursa-pastoris and Their Anti-inflammatory Activity

  • Cha, Joon Min;Kim, Dong Hyun;Lee, Tae Hyun;Subedi, Lalita;Kim, Sun Yeou;Lee, Kang Ro
    • Natural Product Sciences
    • /
    • v.24 no.2
    • /
    • pp.132-138
    • /
    • 2018
  • Phytochemical investigation of 80% MeOH extract of the aerial parts of Capsella bursa-pastoris yielded fourteen compounds (1 - 14). The structures of the compounds were elucidated by spectroscopic methods to be methyl-1-thio-${\beta}$-D-glucopyranosyl disulfide (1), 10-methylsulphinyl-decanenitrile (2), 11-methyl-sulphinyl-undecanenitrile (3), 1-O-(lauroyl)glycerol (4), phytene-1, 2-diol (5), (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmen-9-one (6), loliolide (7), ${\beta}$-sitosterol (8), 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone (9), 1-feruloyl-${\beta}$-D-glucopyranoside (10), pinoresinol-4'-O-${\beta}$-D-glucopyranoside (11), luteolin (12), quercetin-3-O-${\beta}$-D-glucopyranoside (13), and luteolin 6-C-${\beta}$-glucopyranoside (14). Although compound 1 was reported as synthetic compound, 1 was first isolated from natural source. NMR spectral data assignments of 1, 2 and 3 were reported for the first time, and compounds 1 - 14 were for the first time reported from this plant source. The anti-inflammatory effects of 1 - 14 were evaluated in lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cells. Compounds 12 exhibited strong inhibitory effects on nitric oxide production in LPS-activated BV-2 cells with $IC_{50}$ values of $9.70{\mu}M$.

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination

  • Kim, Suhyun;Lee, Yun-Il;Chang, Ki-Young;Lee, Dong-Won;Cho, Sung Chun;Ha, Young Wan;Na, Ji Eun;Rhyu, Im Joo;Park, Sang Chul;Park, Hae-Chul
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.1013-1021
    • /
    • 2015
  • Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.

Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway

  • Zhao, Dong;Gu, Ming-Yao;Xu, Jiu Liang;Zhang, Li Jun;Ryu, Shi Yong;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2019
  • Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, prostaglandin (PG) $E_2$, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated $Akt/IKK/NF-{\kappa}B$ pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and $TNF-{\alpha}$ by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting $Akt/IKK/I{\kappa}B/NF-{\kappa}B$ pathway and promoting Nrf-2/HO-1 pathway.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.