Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0129

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1  

Lee, Ji Ae (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Kim, Dong Jin (Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology)
Hwang, Onyou (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Abstract
Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.
Keywords
heme oxygenase-1; $I{\kappa}B$ kinase; mitogen-activated protein kinases; neuroinflammation, Nrf2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J.A., Kim, J.H., Woo, S.Y., Son, H.J., Han, S.H., Jang, B.K., Choi, J.W., Kim, D.J., Park, K.D., and Hwang, O. (2015b). A novel compound VSC2 has antiinflammatory and antioxidant properties in microglia and in Parkinson's disease animal model. Br. J. Pharmacol. 172, 1087-1100.   DOI
2 Lee, J.A., Son, H.J., Choi, J.W., Kim, J., Han, S.H., Shin, N., Kim, J.H., Kim, S.J., Heo, J.Y., Kim, D.J., et al. (2018b). Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220. Neurochem. Int. 112, 96-107.   DOI
3 Lee, J.A., Son, H.J., Kim, J.H., Park, K.D., Shin, N., Kim, H.R., Kim, E.M., Kim, D.J., and Hwang, O. (2016). A novel synthetic isothiocyanate ITC-57 displays antioxidant, anti-inflammatory, and neuroprotective properties in a mouse Parkinson's disease model. Free Radic. Res. 50, 1188-1199.   DOI
4 Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M., and Przedborski, S. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403-1409.   DOI
5 Liu, X.M., Peyton, K.J., Shebib, A.R., Wang, H., Korthuis, R.J., and Durante, W. (2011). Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol. 300, H84-H93.   DOI
6 Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., and Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247.   DOI
7 Rahman, I. and MacNee, W. (2000). Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med. 28, 1405-1420.   DOI
8 Rojo, A.I., Innamorato, N.G., Martin-Moreno, A.M., De Ceballos, M.L., Yamamoto, M., and Cuadrado, A. (2010). Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58, 588-598.   DOI
9 Scheidereit, C. (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25, 6685-6705.   DOI
10 Son, H.J., Han, S.H., Lee, J.A., Lee, C.S., Seo, J.W., Chi, D.Y., and Hwang, O. (2016). 2-Acetyl-7-hydroxy-6-methoxy-1-methyl-1,2,3,4,-tetrahydroisoquinoline exhibits anti-inflammatory properties and protects the nigral dopaminergic neurons. Eur. J. Pharmacol. 771, 152-161.   DOI
11 Son, H.J., Lee, J.A., Shin, N., Choi, J.H., Seo, J.W., Chi, D.Y., Lee, C.S., Kim, E.M., Choe, H., and Hwang, O. (2012). A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson's disease induced by MPTP. Br. J. Pharmacol. 165, 2213-2227.   DOI
12 Wang, Y., Zhang, Y., Wei, Z., Li, H., Zhou, H., Zhang, Z., and Zhang, Z. (2009). JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson's disease. J. Neurol. Sci. 285, 172-177.   DOI
13 Woo, S.Y., Kim, J.H., Moon, M.K., Han, S.H., Yeon, S.K., Choi, J.W., Jang, B.K., Song, H.J., Kang, Y.G., Kim, J.W., et al. (2014). Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson's disease therapy. J. Med. Chem. 57, 1473-1487.   DOI
14 Xing, B., Bachstetter, A.D., and Van Eldik, L.J. (2011). Microglial $p38{\alpha}$ MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving $TNF{\alpha}$. Mol. Neurodegener. 6, 84.   DOI
15 Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229-237.   DOI
16 Zimmermann, K., Baldinger, J., Mayerhofer, B., Atanasov, A.G., Dirsch, V.M., and Heiss, E.H. (2015). Activated AMPK boosts the Nrf2/HO-1 signaling axis-a role for the unfolded protein response. Free Rad. Biol. Med. 88, 417-426.   DOI
17 Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (San Diego: Academic Press).
18 Yang, Q.Q. and Zhou, J.W. (2019). Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67, 1017-1035.   DOI
19 Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597.   DOI
20 Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., and Cook, J.L. (1999). Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071-26078.   DOI
21 Bukhari, S.N., Jantan, I., and Jasamai, M. (2013). Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem. 13, 87-94.   DOI
22 Caivano, M. and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J. Immunol. 164, 3018-3025.   DOI
23 Czlonkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I., and Czlonkowski, A. (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5, 137-143.   DOI
24 Foresti, R., Bains, S.K., Pitchumony, T.S., de Castro Bras, L.E., Drago, F., Dubois-Rande, J.L., Bucolo, C., and Motterlini, R. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol. Res. 76, 132-148.   DOI
25 Gamble, C., McIntosh, K., Scott, R., Ho, K.H., Plevin, R., and Paul, A. (2012). Inhibitory kappa B Kinases as targets for pharmacological regulation. Br. J. Pharmacol. 165, 802-819.   DOI
26 Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., and Brooks, D.J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404-412.   DOI
27 Han, J. and Ulevitch, R.J. (2005). Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198-1205.   DOI
28 Ghosh, A., Roy, A., Liu, X., Kordower, J.H., Mufson, E.J., Hartley, D.M., Ghosh, S., Mosley, R.L., Gendelman, H.E., and Pahan, K. (2007). Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 104, 18754-18759.   DOI
29 Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934.   DOI
30 Gray, J.G., Chandra, G., Clay, W.C., Stinnett, S.W., Haneline, S.A., Lorenz, J.J., Patel, I.R., Wisely, G.B., Furdon, P.J., Taylor, J.D., et al. (1993). A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for induction in U937 and THP-1 monocytic cell lines. Mol. Cell. Biol. 13, 6678-6689.   DOI
31 Herrera, A.J., Castano, A., Venero, J.L., Cano, J., and Machado, A. (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol. Dis. 7, 429-447.   DOI
32 Hunot, S., Brugg, B., Ricard, D., Michel, P.P., Muriel, M.P., Ruberg, M., Faucheux, B.A., Agid, Y., and Hirsch, E.C. (1997). Nuclear translocation of NF-${\kappa}B$ is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 94, 7531-7536.   DOI
33 Hurley, L.L. and Tizabi, Y. (2013). Neuroinflammation, neurodegeneration, and depression. Neurotox. Res. 23, 131-144.   DOI
34 Hwang, O. (2013). Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 22, 11-17.   DOI
35 Jiang, Z.Y., Lu, M.C., and You, Q.D. (2016). Discovery and development of kelch-like ECH-associated protein 1. Nuclear factor erythroid 2-related factor 2 (Keap1:Nrf2) protein-protein interaction inhibitors: achievements, challenges, and future directions. J. Med. Chem. 59, 10837-10858.   DOI
36 Innamorato, N.G., Rojo, A.I., Garcia-Yague, A.J., Yamamoto, M., de Ceballos, M.L., and Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181, 680-689.   DOI
37 Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322.   DOI
38 Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207.   DOI
39 Joo, M.S., Kim, W.D., Lee, K.Y., Kim, J.H., Koo, J.H., and Kim, S.G. (2016). AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36, 1931-1942.   DOI
40 Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262.   DOI
41 Kang, Y.J., Chen, J., Otsuka, M., Mols, J., Ren, S., Wang, Y., and Han, J. (2008). Macrophage deletion of p38alpha partially impairs lipopolysaccharideinduced cellular activation. J. Immunol. 180, 5075-5082.   DOI
42 Kundu, J.K. and Surh, Y.J. (2010). Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm. Res. 27, 999-1013.   DOI
43 Kimura, A., Kitajima, M., Nishida, K., Serada, S., Fujimoto, M., Naka, T., Fujii-Kuriyama, Y., Sakamato, S., Ito, T., Handa, H., et al. (2018). NQO1 inhibits the TLR-dependent production of selective cytokines by promoting I${\kappa}B-{\zeta}$ degradation. J. Exp. Med. 215, 2197-2209.   DOI
44 Kleinert, H., Pautz, A., Linker, K., and Schwarz, P.M. (2004). Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255-266.   DOI
45 Kristof, A.S., Marks-Konczalik, J., and Moss, J. (2001). Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J. Biol. Chem. 276, 8445-8452.   DOI
46 Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., and Czlonkowska, A. (1999). The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50-61.   DOI
47 Lee, E.J., Ko, H.M., Jeong, Y.H., Park, E.M., and Kim, H.S. (2015a). ${\beta}$-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133.   DOI
48 Lee, J.A., Kim, H.R., Kim, J., Park, K.D., Kim, D.J., and Hwang, O. (2018a). The novel neuroprotective compound KMS99220 has an early antineuroinflammatory effect via AMPK and HO-1, independent of Nrf2. Exp. Neurobiol. 27, 408-418.   DOI