Browse > Article

Modulation of Suppressive Activity of Lipopolysaccharide-Induced Nitric Oxide Production by Glycosidation of Flavonoids  

Kwon, Yong-Soo (College of Pharmacy, Kangwon National University)
Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University)
Sohn, Soon-Joo (College of Pharmacy, Kangwon National University)
Kong, Pil-Jae (Department of Pharmacology, College of Medicine, Kangwon National University)
Cheong, Il-Young (Department of Anesthesiology, College of Medicine, Kangwon National University)
Kim, Chang-Min (College of Pharmacy, Kangwon National University)
Chun, Wan-Joo (Department of Pharmacology, College of Medicine, Kangwon National University)
Publication Information
Archives of Pharmacal Research / v.27, no.7, 2004 , pp. 751-756 More about this Journal
Abstract
Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.
Keywords
Kaempferol; Quercetin; Aromadendrin; Glycoside; Aglycone; Nitric oxide; Microglia;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H., An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res., 31, 616-621 (1992)   DOI   ScienceOn
2 Havsteen, B., Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol., 32, 1141-1148 (1983)   DOI   PUBMED   ScienceOn
3 Hwang, B. Y., Kim, H. S., Lee, J. H., Hong, Y. S., Ro, J. S., Lee, K. S., and Lee, J. J., Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus. J. Nat. Prod., 64, 82-84 (2001)   DOI   ScienceOn
4 Kim, H., Kim, Y. S., Kim, S. Y., and Suk, K., The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci. Lett., 309, 67-71. (2001)   DOI   ScienceOn
5 Markham, K. R., Geiger, H., and Jaggy, H., Kaempferol-3-O-glucosyl( 1-2)rhamnoside from Ginkgo biloba and a reappraisal of other gluco(1-2, 1-3, and 1-4)rhamnoside structures. Phytochemistry, 31, 1009-1011. (1992)   PUBMED
6 Kubo, I. and Kinst-Hori, I., Tyrosinase inhibitors from cumin. J. Agric. Food Chem., 46, 5338-5341 (1998a)   DOI   ScienceOn
7 Kubo, I. and Kinst-Hori, I., Tyrosinase inhibitors from anise oil. J. Agric. Food Chem., 46, 1268-1271 (1998b)   DOI   ScienceOn
8 Mayer, A. M., Polyphenol oxidase in plants-Recent progress. Phytochemistry, 26, 11-20 (1987)   DOI   ScienceOn
9 Perez-Bernal, A., Munoz-Perez, M. A., and Camacho, F., Management of facial hyperpigmentation. Am. J. Clin. Dermatol., 1, 261-268 (2000)   DOI   ScienceOn
10 Nerya, O., Vaya, J., Musa, R, Izrael, S., Ben-Arie, R, and Tamir, S., Glabrene and isoliquiritigenin as tyrosinase inhibitors from Licorice Roots. J. Agric. Food Chem., 51, 1201-1207 (2003)   DOI   ScienceOn
11 Won, H. M., Kwon, W. S., Lee, J. H., and Kim, C. M., Chemical constituents of the leaves of Weigela subsessillis. Kor. J. Pharmcogn., 35, 1-5 (2004)
12 Atkinson, P. W, Brown, W. V., and Gilby, A. R., Phenolic compounds from insect cuticle: Identification of some lipid antioxidants. Insect Biochem., 3, 309-315 (1973)   DOI   ScienceOn
13 Hou, L., Zhou, B., Yang, L., and Liu, Z. L., Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by f1avonols and their glycosides. Org. Biomol. Chem., 2, 1419-1423 (2004)   DOI   ScienceOn
14 Liu, G. T., Ahang, T. M., Wang, B. E., and Wang, Y. W., Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes. Biochem. Pharmacol., 43, 147-152(1992)   DOI   ScienceOn
15 Arts, I. C., Sesink, A. L., Faassen-Peters, M., and Hollman, P. C., The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr., 91, 841-847 (2004)   DOI   ScienceOn
16 Murphy, M. P., Nitric oxide and cell death. Biochim. Biophys. Acta, 1411, 401-414 (1999)   DOI   ScienceOn
17 Ha, H. J., Kwon, Y. S., Park, S. M., Shin, T., Park, J. H., Kim, H. C., Kwon, M. S., and Wie, M. B., Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol. Pharm. Bull., 26, 544-546 (2003)   DOI   ScienceOn
18 No, J. K., Soung, D. Y., Kim, Y. J., Shim, K.H., Jun, Y. S., Rhee, S. H., Yokozawa, T., and Chung, H. Y., Inhibition of tyrosinase by green tea components. Life Sci., 65, PL 241-246 (1999)
19 Liu, B., Gao, H. M., Wang, J. Y., Jeohn, G. H., Cooper, C. L., and Hong, J. S., Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 962, 318-331 (2002)   DOI   ScienceOn
20 Aligiannis, N., Mitaku, S., Mitrocotsa, D., and Leclerc, S., Flavonoids as cycline-dependent kinase inhibitors: inhibition of cdc 25 phosphatase activity by flavonoids belonging to the quercetin and kaempferol series. Planta Med., 67, 468-470 (2001)   DOI   ScienceOn
21 Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., and Kim, H. P, Effects of naturally occurring f1avonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol., 58, 759-765 (1999)   DOI   PUBMED   ScienceOn
22 Masuoka, C., Ono, M., Ito, Y., Okawa, M., and Nohara, T., New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum. Chem. Pharm. Bull. (Tokyo), 50, 1413-1415 (2002)   DOI   ScienceOn
23 Murga, R., Sanz, M. T., Beltran, S., and Cabezas, J. L., Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide. J. Supercrit. Flu., 23, 113-121 (2002)   DOI   ScienceOn
24 Gudej, J., Kaempferol and quercetin glycosides from Rubus idaeus L. leaves. Acta. Pol. Pharm., 60, 313-315 (2003)   PUBMED
25 Liu, Y., Xie, P., and Wang, B., Evaluation of radix Salvae miltiorrhizae and its preparation. Zhongguo Zhongyao Zazhi, 15, 159-162 (1990)
26 Chang, B. S., Kwon, W. S., and Kim, C. M., The chemical structures and their antioxidant activity of the components isolated from the heartwood of Hemiptelea davidii. Kor. J. Pharmcogn., 35, 80-87 (2004)
27 Kim, S. S., Kong, P. J., Kim, B. S., Sheen, D. H., Nam, S. Y., and Chun, W., Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells. Arch. Pharm. Res., 27, 314-318 (2004)   DOI   ScienceOn
28 Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Nairn, H. Y., Williamson, G., Swallow, D. M., and Kroon P. A., Deglycosylation by small intestinal epitheUal cell betaglucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 42, 29-42 (2003).   DOI   ScienceOn
29 Wattel, A., Kamel, S., Mentaverri, R., Lorget, E, Prouillet, C., Petit, J. P., Fardelonne, P., and Brazier, M., Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitroosteociastic bone resorption. Biochem. Pharmacol., 65, 35-42 (2003)   DOI   ScienceOn
30 Green, L. C., Wagner, D. A, Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 126, 131-138 (1982)   DOI   ScienceOn
31 Kobayashi, T., Shimizugawa, T., Osakabe, T., Watanabe, S., and Okuyama, H., A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids. Nutr. Res., 17, 111-114 (1997)   DOI   ScienceOn