DOI QR코드

DOI QR Code

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kim, Dong Jin (Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology) ;
  • Hwang, Onyou (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
  • Received : 2019.06.14
  • Accepted : 2019.09.23
  • Published : 2019.10.31

Abstract

Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.

Keywords

References

  1. Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
  2. Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., and Cook, J.L. (1999). Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071-26078. https://doi.org/10.1074/jbc.274.37.26071
  3. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229-237. https://doi.org/10.1016/0165-5728(90)90073-V
  4. Bukhari, S.N., Jantan, I., and Jasamai, M. (2013). Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem. 13, 87-94. https://doi.org/10.2174/138955713804484767
  5. Caivano, M. and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J. Immunol. 164, 3018-3025. https://doi.org/10.4049/jimmunol.164.6.3018
  6. Czlonkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I., and Czlonkowski, A. (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5, 137-143. https://doi.org/10.1006/neur.1996.0020
  7. Foresti, R., Bains, S.K., Pitchumony, T.S., de Castro Bras, L.E., Drago, F., Dubois-Rande, J.L., Bucolo, C., and Motterlini, R. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol. Res. 76, 132-148. https://doi.org/10.1016/j.phrs.2013.07.010
  8. Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (San Diego: Academic Press).
  9. Gamble, C., McIntosh, K., Scott, R., Ho, K.H., Plevin, R., and Paul, A. (2012). Inhibitory kappa B Kinases as targets for pharmacological regulation. Br. J. Pharmacol. 165, 802-819. https://doi.org/10.1111/j.1476-5381.2011.01608.x
  10. Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., and Brooks, D.J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404-412. https://doi.org/10.1016/j.nbd.2005.08.002
  11. Ghosh, A., Roy, A., Liu, X., Kordower, J.H., Mufson, E.J., Hartley, D.M., Ghosh, S., Mosley, R.L., Gendelman, H.E., and Pahan, K. (2007). Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 104, 18754-18759. https://doi.org/10.1073/pnas.0704908104
  12. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
  13. Gray, J.G., Chandra, G., Clay, W.C., Stinnett, S.W., Haneline, S.A., Lorenz, J.J., Patel, I.R., Wisely, G.B., Furdon, P.J., Taylor, J.D., et al. (1993). A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for induction in U937 and THP-1 monocytic cell lines. Mol. Cell. Biol. 13, 6678-6689. https://doi.org/10.1128/MCB.13.11.6678
  14. Han, J. and Ulevitch, R.J. (2005). Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198-1205. https://doi.org/10.1038/ni1274
  15. Herrera, A.J., Castano, A., Venero, J.L., Cano, J., and Machado, A. (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol. Dis. 7, 429-447. https://doi.org/10.1006/nbdi.2000.0289
  16. Hunot, S., Brugg, B., Ricard, D., Michel, P.P., Muriel, M.P., Ruberg, M., Faucheux, B.A., Agid, Y., and Hirsch, E.C. (1997). Nuclear translocation of NF-${\kappa}B$ is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 94, 7531-7536. https://doi.org/10.1073/pnas.94.14.7531
  17. Hurley, L.L. and Tizabi, Y. (2013). Neuroinflammation, neurodegeneration, and depression. Neurotox. Res. 23, 131-144. https://doi.org/10.1007/s12640-012-9348-1
  18. Hwang, O. (2013). Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 22, 11-17. https://doi.org/10.5607/en.2013.22.1.11
  19. Innamorato, N.G., Rojo, A.I., Garcia-Yague, A.J., Yamamoto, M., de Ceballos, M.L., and Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181, 680-689. https://doi.org/10.4049/jimmunol.181.1.680
  20. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  21. Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  22. Jiang, Z.Y., Lu, M.C., and You, Q.D. (2016). Discovery and development of kelch-like ECH-associated protein 1. Nuclear factor erythroid 2-related factor 2 (Keap1:Nrf2) protein-protein interaction inhibitors: achievements, challenges, and future directions. J. Med. Chem. 59, 10837-10858. https://doi.org/10.1021/acs.jmedchem.6b00586
  23. Joo, M.S., Kim, W.D., Lee, K.Y., Kim, J.H., Koo, J.H., and Kim, S.G. (2016). AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36, 1931-1942. https://doi.org/10.1128/MCB.00118-16
  24. Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  25. Kang, Y.J., Chen, J., Otsuka, M., Mols, J., Ren, S., Wang, Y., and Han, J. (2008). Macrophage deletion of p38alpha partially impairs lipopolysaccharideinduced cellular activation. J. Immunol. 180, 5075-5082. https://doi.org/10.4049/jimmunol.180.7.5075
  26. Kimura, A., Kitajima, M., Nishida, K., Serada, S., Fujimoto, M., Naka, T., Fujii-Kuriyama, Y., Sakamato, S., Ito, T., Handa, H., et al. (2018). NQO1 inhibits the TLR-dependent production of selective cytokines by promoting I${\kappa}B-{\zeta}$ degradation. J. Exp. Med. 215, 2197-2209. https://doi.org/10.1084/jem.20172024
  27. Kleinert, H., Pautz, A., Linker, K., and Schwarz, P.M. (2004). Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255-266. https://doi.org/10.1016/j.ejphar.2004.07.030
  28. Kristof, A.S., Marks-Konczalik, J., and Moss, J. (2001). Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J. Biol. Chem. 276, 8445-8452. https://doi.org/10.1074/jbc.M009563200
  29. Kundu, J.K. and Surh, Y.J. (2010). Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm. Res. 27, 999-1013. https://doi.org/10.1007/s11095-010-0096-8
  30. Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., and Czlonkowska, A. (1999). The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50-61. https://doi.org/10.1006/exnr.1998.6993
  31. Lee, E.J., Ko, H.M., Jeong, Y.H., Park, E.M., and Kim, H.S. (2015a). ${\beta}$-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z
  32. Lee, J.A., Kim, H.R., Kim, J., Park, K.D., Kim, D.J., and Hwang, O. (2018a). The novel neuroprotective compound KMS99220 has an early antineuroinflammatory effect via AMPK and HO-1, independent of Nrf2. Exp. Neurobiol. 27, 408-418. https://doi.org/10.5607/en.2018.27.5.408
  33. Lee, J.A., Kim, J.H., Woo, S.Y., Son, H.J., Han, S.H., Jang, B.K., Choi, J.W., Kim, D.J., Park, K.D., and Hwang, O. (2015b). A novel compound VSC2 has antiinflammatory and antioxidant properties in microglia and in Parkinson's disease animal model. Br. J. Pharmacol. 172, 1087-1100. https://doi.org/10.1111/bph.12973
  34. Lee, J.A., Son, H.J., Choi, J.W., Kim, J., Han, S.H., Shin, N., Kim, J.H., Kim, S.J., Heo, J.Y., Kim, D.J., et al. (2018b). Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220. Neurochem. Int. 112, 96-107. https://doi.org/10.1016/j.neuint.2017.11.006
  35. Lee, J.A., Son, H.J., Kim, J.H., Park, K.D., Shin, N., Kim, H.R., Kim, E.M., Kim, D.J., and Hwang, O. (2016). A novel synthetic isothiocyanate ITC-57 displays antioxidant, anti-inflammatory, and neuroprotective properties in a mouse Parkinson's disease model. Free Radic. Res. 50, 1188-1199. https://doi.org/10.1080/10715762.2016.1223293
  36. Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M., and Przedborski, S. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403-1409. https://doi.org/10.1038/70978
  37. Liu, X.M., Peyton, K.J., Shebib, A.R., Wang, H., Korthuis, R.J., and Durante, W. (2011). Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol. 300, H84-H93. https://doi.org/10.1152/ajpheart.00749.2010
  38. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., and Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  39. Rahman, I. and MacNee, W. (2000). Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med. 28, 1405-1420. https://doi.org/10.1016/S0891-5849(00)00215-X
  40. Rojo, A.I., Innamorato, N.G., Martin-Moreno, A.M., De Ceballos, M.L., Yamamoto, M., and Cuadrado, A. (2010). Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58, 588-598. https://doi.org/10.1002/glia.20947
  41. Scheidereit, C. (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25, 6685-6705. https://doi.org/10.1038/sj.onc.1209934
  42. Son, H.J., Han, S.H., Lee, J.A., Lee, C.S., Seo, J.W., Chi, D.Y., and Hwang, O. (2016). 2-Acetyl-7-hydroxy-6-methoxy-1-methyl-1,2,3,4,-tetrahydroisoquinoline exhibits anti-inflammatory properties and protects the nigral dopaminergic neurons. Eur. J. Pharmacol. 771, 152-161. https://doi.org/10.1016/j.ejphar.2015.12.009
  43. Son, H.J., Lee, J.A., Shin, N., Choi, J.H., Seo, J.W., Chi, D.Y., Lee, C.S., Kim, E.M., Choe, H., and Hwang, O. (2012). A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson's disease induced by MPTP. Br. J. Pharmacol. 165, 2213-2227. https://doi.org/10.1111/j.1476-5381.2011.01692.x
  44. Wang, Y., Zhang, Y., Wei, Z., Li, H., Zhou, H., Zhang, Z., and Zhang, Z. (2009). JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson's disease. J. Neurol. Sci. 285, 172-177. https://doi.org/10.1016/j.jns.2009.06.034
  45. Woo, S.Y., Kim, J.H., Moon, M.K., Han, S.H., Yeon, S.K., Choi, J.W., Jang, B.K., Song, H.J., Kang, Y.G., Kim, J.W., et al. (2014). Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson's disease therapy. J. Med. Chem. 57, 1473-1487. https://doi.org/10.1021/jm401788m
  46. Xing, B., Bachstetter, A.D., and Van Eldik, L.J. (2011). Microglial $p38{\alpha}$ MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving $TNF{\alpha}$. Mol. Neurodegener. 6, 84. https://doi.org/10.1186/1750-1326-6-84
  47. Yang, Q.Q. and Zhou, J.W. (2019). Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67, 1017-1035. https://doi.org/10.1002/glia.23571
  48. Zimmermann, K., Baldinger, J., Mayerhofer, B., Atanasov, A.G., Dirsch, V.M., and Heiss, E.H. (2015). Activated AMPK boosts the Nrf2/HO-1 signaling axis-a role for the unfolded protein response. Free Rad. Biol. Med. 88, 417-426. https://doi.org/10.1016/j.freeradbiomed.2015.03.030

Cited by

  1. Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones vol.891, 2021, https://doi.org/10.1016/j.ejphar.2020.173695
  2. Chalcone Derivatives: Role in Anticancer Therapy vol.11, pp.6, 2019, https://doi.org/10.3390/biom11060894
  3. PDPOB Exerts Multiaspect Anti-Ischemic Effects Associated with the Regulation of PI3K/AKT and MAPK Signaling Pathways vol.12, pp.23, 2019, https://doi.org/10.1021/acschemneuro.1c00459
  4. Protective effects of extracellular proteins of Saccharomycopsis fibuligera on UVA-damaged human skin fibroblasts vol.88, 2022, https://doi.org/10.1016/j.jff.2021.104897