References
- Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
- Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., and Cook, J.L. (1999). Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071-26078. https://doi.org/10.1074/jbc.274.37.26071
- Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229-237. https://doi.org/10.1016/0165-5728(90)90073-V
- Bukhari, S.N., Jantan, I., and Jasamai, M. (2013). Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem. 13, 87-94. https://doi.org/10.2174/138955713804484767
- Caivano, M. and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J. Immunol. 164, 3018-3025. https://doi.org/10.4049/jimmunol.164.6.3018
- Czlonkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I., and Czlonkowski, A. (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5, 137-143. https://doi.org/10.1006/neur.1996.0020
- Foresti, R., Bains, S.K., Pitchumony, T.S., de Castro Bras, L.E., Drago, F., Dubois-Rande, J.L., Bucolo, C., and Motterlini, R. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol. Res. 76, 132-148. https://doi.org/10.1016/j.phrs.2013.07.010
- Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (San Diego: Academic Press).
- Gamble, C., McIntosh, K., Scott, R., Ho, K.H., Plevin, R., and Paul, A. (2012). Inhibitory kappa B Kinases as targets for pharmacological regulation. Br. J. Pharmacol. 165, 802-819. https://doi.org/10.1111/j.1476-5381.2011.01608.x
- Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., and Brooks, D.J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404-412. https://doi.org/10.1016/j.nbd.2005.08.002
- Ghosh, A., Roy, A., Liu, X., Kordower, J.H., Mufson, E.J., Hartley, D.M., Ghosh, S., Mosley, R.L., Gendelman, H.E., and Pahan, K. (2007). Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 104, 18754-18759. https://doi.org/10.1073/pnas.0704908104
- Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
- Gray, J.G., Chandra, G., Clay, W.C., Stinnett, S.W., Haneline, S.A., Lorenz, J.J., Patel, I.R., Wisely, G.B., Furdon, P.J., Taylor, J.D., et al. (1993). A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for induction in U937 and THP-1 monocytic cell lines. Mol. Cell. Biol. 13, 6678-6689. https://doi.org/10.1128/MCB.13.11.6678
- Han, J. and Ulevitch, R.J. (2005). Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198-1205. https://doi.org/10.1038/ni1274
- Herrera, A.J., Castano, A., Venero, J.L., Cano, J., and Machado, A. (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol. Dis. 7, 429-447. https://doi.org/10.1006/nbdi.2000.0289
-
Hunot, S., Brugg, B., Ricard, D., Michel, P.P., Muriel, M.P., Ruberg, M., Faucheux, B.A., Agid, Y., and Hirsch, E.C. (1997). Nuclear translocation of NF-
${\kappa}B$ is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 94, 7531-7536. https://doi.org/10.1073/pnas.94.14.7531 - Hurley, L.L. and Tizabi, Y. (2013). Neuroinflammation, neurodegeneration, and depression. Neurotox. Res. 23, 131-144. https://doi.org/10.1007/s12640-012-9348-1
- Hwang, O. (2013). Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 22, 11-17. https://doi.org/10.5607/en.2013.22.1.11
- Innamorato, N.G., Rojo, A.I., Garcia-Yague, A.J., Yamamoto, M., de Ceballos, M.L., and Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181, 680-689. https://doi.org/10.4049/jimmunol.181.1.680
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
- Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
- Jiang, Z.Y., Lu, M.C., and You, Q.D. (2016). Discovery and development of kelch-like ECH-associated protein 1. Nuclear factor erythroid 2-related factor 2 (Keap1:Nrf2) protein-protein interaction inhibitors: achievements, challenges, and future directions. J. Med. Chem. 59, 10837-10858. https://doi.org/10.1021/acs.jmedchem.6b00586
- Joo, M.S., Kim, W.D., Lee, K.Y., Kim, J.H., Koo, J.H., and Kim, S.G. (2016). AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36, 1931-1942. https://doi.org/10.1128/MCB.00118-16
- Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
- Kang, Y.J., Chen, J., Otsuka, M., Mols, J., Ren, S., Wang, Y., and Han, J. (2008). Macrophage deletion of p38alpha partially impairs lipopolysaccharideinduced cellular activation. J. Immunol. 180, 5075-5082. https://doi.org/10.4049/jimmunol.180.7.5075
-
Kimura, A., Kitajima, M., Nishida, K., Serada, S., Fujimoto, M., Naka, T., Fujii-Kuriyama, Y., Sakamato, S., Ito, T., Handa, H., et al. (2018). NQO1 inhibits the TLR-dependent production of selective cytokines by promoting I
${\kappa}B-{\zeta}$ degradation. J. Exp. Med. 215, 2197-2209. https://doi.org/10.1084/jem.20172024 - Kleinert, H., Pautz, A., Linker, K., and Schwarz, P.M. (2004). Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255-266. https://doi.org/10.1016/j.ejphar.2004.07.030
- Kristof, A.S., Marks-Konczalik, J., and Moss, J. (2001). Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J. Biol. Chem. 276, 8445-8452. https://doi.org/10.1074/jbc.M009563200
- Kundu, J.K. and Surh, Y.J. (2010). Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm. Res. 27, 999-1013. https://doi.org/10.1007/s11095-010-0096-8
- Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., and Czlonkowska, A. (1999). The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50-61. https://doi.org/10.1006/exnr.1998.6993
-
Lee, E.J., Ko, H.M., Jeong, Y.H., Park, E.M., and Kim, H.S. (2015a).
${\beta}$ -Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z - Lee, J.A., Kim, H.R., Kim, J., Park, K.D., Kim, D.J., and Hwang, O. (2018a). The novel neuroprotective compound KMS99220 has an early antineuroinflammatory effect via AMPK and HO-1, independent of Nrf2. Exp. Neurobiol. 27, 408-418. https://doi.org/10.5607/en.2018.27.5.408
- Lee, J.A., Kim, J.H., Woo, S.Y., Son, H.J., Han, S.H., Jang, B.K., Choi, J.W., Kim, D.J., Park, K.D., and Hwang, O. (2015b). A novel compound VSC2 has antiinflammatory and antioxidant properties in microglia and in Parkinson's disease animal model. Br. J. Pharmacol. 172, 1087-1100. https://doi.org/10.1111/bph.12973
- Lee, J.A., Son, H.J., Choi, J.W., Kim, J., Han, S.H., Shin, N., Kim, J.H., Kim, S.J., Heo, J.Y., Kim, D.J., et al. (2018b). Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220. Neurochem. Int. 112, 96-107. https://doi.org/10.1016/j.neuint.2017.11.006
- Lee, J.A., Son, H.J., Kim, J.H., Park, K.D., Shin, N., Kim, H.R., Kim, E.M., Kim, D.J., and Hwang, O. (2016). A novel synthetic isothiocyanate ITC-57 displays antioxidant, anti-inflammatory, and neuroprotective properties in a mouse Parkinson's disease model. Free Radic. Res. 50, 1188-1199. https://doi.org/10.1080/10715762.2016.1223293
- Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M., and Przedborski, S. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403-1409. https://doi.org/10.1038/70978
- Liu, X.M., Peyton, K.J., Shebib, A.R., Wang, H., Korthuis, R.J., and Durante, W. (2011). Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol. 300, H84-H93. https://doi.org/10.1152/ajpheart.00749.2010
- Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., and Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
- Rahman, I. and MacNee, W. (2000). Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med. 28, 1405-1420. https://doi.org/10.1016/S0891-5849(00)00215-X
- Rojo, A.I., Innamorato, N.G., Martin-Moreno, A.M., De Ceballos, M.L., Yamamoto, M., and Cuadrado, A. (2010). Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58, 588-598. https://doi.org/10.1002/glia.20947
- Scheidereit, C. (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25, 6685-6705. https://doi.org/10.1038/sj.onc.1209934
- Son, H.J., Han, S.H., Lee, J.A., Lee, C.S., Seo, J.W., Chi, D.Y., and Hwang, O. (2016). 2-Acetyl-7-hydroxy-6-methoxy-1-methyl-1,2,3,4,-tetrahydroisoquinoline exhibits anti-inflammatory properties and protects the nigral dopaminergic neurons. Eur. J. Pharmacol. 771, 152-161. https://doi.org/10.1016/j.ejphar.2015.12.009
- Son, H.J., Lee, J.A., Shin, N., Choi, J.H., Seo, J.W., Chi, D.Y., Lee, C.S., Kim, E.M., Choe, H., and Hwang, O. (2012). A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson's disease induced by MPTP. Br. J. Pharmacol. 165, 2213-2227. https://doi.org/10.1111/j.1476-5381.2011.01692.x
- Wang, Y., Zhang, Y., Wei, Z., Li, H., Zhou, H., Zhang, Z., and Zhang, Z. (2009). JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson's disease. J. Neurol. Sci. 285, 172-177. https://doi.org/10.1016/j.jns.2009.06.034
- Woo, S.Y., Kim, J.H., Moon, M.K., Han, S.H., Yeon, S.K., Choi, J.W., Jang, B.K., Song, H.J., Kang, Y.G., Kim, J.W., et al. (2014). Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson's disease therapy. J. Med. Chem. 57, 1473-1487. https://doi.org/10.1021/jm401788m
-
Xing, B., Bachstetter, A.D., and Van Eldik, L.J. (2011). Microglial
$p38{\alpha}$ MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving$TNF{\alpha}$ . Mol. Neurodegener. 6, 84. https://doi.org/10.1186/1750-1326-6-84 - Yang, Q.Q. and Zhou, J.W. (2019). Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67, 1017-1035. https://doi.org/10.1002/glia.23571
- Zimmermann, K., Baldinger, J., Mayerhofer, B., Atanasov, A.G., Dirsch, V.M., and Heiss, E.H. (2015). Activated AMPK boosts the Nrf2/HO-1 signaling axis-a role for the unfolded protein response. Free Rad. Biol. Med. 88, 417-426. https://doi.org/10.1016/j.freeradbiomed.2015.03.030
Cited by
- Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones vol.891, 2021, https://doi.org/10.1016/j.ejphar.2020.173695
- Chalcone Derivatives: Role in Anticancer Therapy vol.11, pp.6, 2019, https://doi.org/10.3390/biom11060894
- PDPOB Exerts Multiaspect Anti-Ischemic Effects Associated with the Regulation of PI3K/AKT and MAPK Signaling Pathways vol.12, pp.23, 2019, https://doi.org/10.1021/acschemneuro.1c00459
- Protective effects of extracellular proteins of Saccharomycopsis fibuligera on UVA-damaged human skin fibroblasts vol.88, 2022, https://doi.org/10.1016/j.jff.2021.104897