Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0246

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination  

Kim, Suhyun (Department of Biomedical Sciences, Korea University)
Lee, Yun-Il (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Chang, Ki-Young (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Lee, Dong-Won (Department of Biomedical Sciences, Korea University)
Cho, Sung Chun (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Ha, Young Wan (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Na, Ji Eun (Department of Anatomy, College of Medicine, Korea University)
Rhyu, Im Joo (Department of Anatomy, College of Medicine, Korea University)
Park, Sang Chul (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Park, Hae-Chul (Department of Biomedical Sciences, Korea University)
Abstract
Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.
Keywords
dorsal midline; enhancer; EphA7;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Martiney, J.A., Rajan, A.J., Charles, P.C., Cerami, A., Ulrich, P.C., Macphail, S., Tracey, K.J., and Brosnan, C.F. (1998). Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent. J. Immunol. 160, 5588-5595.
2 Marz, M., Schmidt, R., Rastegar, S., and Strahle, U. (2011). Regenerative response following stab injury in the adult zebrafish telencephalon. Dev. Dyn. 240, 2221-2231.   DOI
3 Miron, V.E., and Franklin, R.J. (2014). Macrophages and CNS remyelination. J. Neurochem. 130, 165-171.   DOI
4 Moharregh-Khiabani, D., Blank, A., Skripuletz, T., Miller, E., Kotsiari, A., Gudi, V., and Stangel, M. (2010). Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One 5, e11769.   DOI
5 Munzel, E.J., Schaefer, K., Obirei, B., Kremmer, E., Burton, E.A., Kuscha, V., Becker, C.G., Brosamle, C., Williams, A., and Becker, T. (2012). Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 60, 253-270.   DOI
6 Olah, M., Amor, S., Brouwer, N., Vinet, J., Eggen, B., Biber, K., and Boddeke, H.W. (2012). Identification of a microglia phenotype supportive of remyelination. Glia 60, 306-321.   DOI
7 Pasquini, L.A., Calatayud, C.A., Bertone Una, A.L., Millet, V., Pasquini, J.M., and Soto, E.F. (2007). The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of proinflammatory cytokines secreted by microglia. Neurochem. Res. 32, 279-292.   DOI
8 Pavelko, K.D., van Engelen, B.G., and Rodriguez, M. (1998). Acceleration in the rate of CNS remyelination in lysolecithin-induced demyelination. J. Neurosci. 18, 2498-2505.   DOI
9 Peppercorn, M.A. (1984). Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 101, 377-386.   DOI
10 Plosker, G.L., and Croom, K.F. (2005). Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs 65, 1825-1849.   DOI
11 Prineas, J.W., and Wright, R.G. (1978). Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 38, 409-421.
12 Prineas, J.W., and Connell, F. (1979). Remyelination in multiple sclerosis. Ann. Neurol. 5, 22-31.   DOI
13 Ransohoff, R.M. (2012). Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074-1077.   DOI
14 Rawji, K.S., and Yong, V.W. (2013). The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin. Dev. Immunol. 2013, 948976.
15 Schonberg, D.L., Popovich, P.G., and McTigue, D.M. (2007). Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J. Neuropathol. Exp. Neurol. 66, 1124-1135.   DOI
16 Schonrock, L.M., Kuhlmann, T., Adler, S., Bitsch, A., and Bruck, W. (1998). Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 24, 320-330.   DOI
17 Shin, J., Park, H.C., Topczewska, J.M., Mawdsley, D.J., and Appel, B. (2003). Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell. Sci. 25, 7-14.   DOI
18 Skripuletz, T., Hackstette, D., Bauer, K., Gudi, V., Pul, R., Voss, E., Berger, K., Kipp, M., Baumgartner, W., and Stangel, M. (2013). Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136, 147-167.   DOI
19 Silvestroff, L., Bartucci, S., Pasquini, J., and Franco, P. (2012). Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp. Neurol. 235, 357-367.   DOI
20 Skripuletz, T., Miller, E., Moharregh-Khiabani, D., Blank, A., Pul, R., Gudi, V., Trebst, C., and Stangel, M. (2010). Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem. Res. 35, 1422-1433.   DOI
21 Tedde, A., Cellini, E., Bagnoli, S., Sorbi, S., and Peri, A. (2008). Mutational screening analysis of DHCR24/seladin-1 gene in Italian familial Alzheimer's disease. Am J. Med. Genet. B Neuropsychiatr. Genet. 147B, 117-119.   DOI
22 Voas, M.G., Lyons, D.A., Naylor, S.G., Arana, N., Rasband, M.N., and Talbot, W.S. (2007). alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr. Biol. 17, 562-568.
23 Wilson, H.C., Scolding, N.J., and Raine, C.S. (2006). Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunol. 176, 162-173.   DOI
24 Zenlea, T., and Peppercorn, M.A. (2014). Immunosuppressive therapies for inflammatory bowel disease. World J. Gastroenterol. 20, 3146-3152.   DOI
25 Chung, A.Y., Kim, P.S., Kim, S., Kim, E., Kim, D., Jeong, I., Kim, H.K., Ryu, J.H., Kim, C.H., Choi, J., et al. (2013). Generation of demyelination models by targeted ablation of oligodendrocytes in the zebrafish CNS. Mol. Cells 36, 82-87.   DOI
26 Asakawa, K., and Kawakami, K. (2008). Targeted gene expression by the Gal4-UAS system in zebrafish. Dev. Growth. Differ. 50, 391-399.   DOI
27 Bhasin, M., Wu, M., and Tsirka, S.E. (2007). Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol. 8, 10.   DOI
28 Brend, T., and Holley, S.A. (2009). Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J. Vis. Exp. 25, pii: 1229.
29 Dale, J., Alcorn, N., Capell, H., and Madhok, R. (2007). Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat. Clin. Pract. Rheumatol. 3, 450-458; quiz, following 478.
30 Emery, B. (2010). Regulation of oligodendrocyte differentiation and myelination. Science 330, 779-782.   DOI
31 Heppner, F.L., Greter, M., Marino, D., Falsig, J., Raivich, G., Hovelmeyer, N., Waisman, A., Rulicke, T., Prinz, M., Priller, J., et al. (2005). Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146-152.   DOI
32 Fantin, A., Vieira, J.M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S.W., and Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829-840.   DOI
33 Franklin, R.J. (2002). Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705-714.   DOI
34 Franklin, R.J., and Ffrench-Constant, C. (2008). Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839-855.   DOI
35 Hoult, J.R. (1986). Pharmacological and biochemical actions of sulphasalazine. Drugs 32 Suppl 1, 18-26.   DOI
36 Imai, M., Watanabe, M., Suyama, K., Osada, T., Sakai, D., Kawada, H., Matsumae, M., and Mochida, J. (2008). Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J. Neurosurg. Spine 8, 58-66.   DOI
37 Jurevics, H., Largent, C., Hostettler, J., Sammond, D.W., Matsushima, G.K., Kleindienst, A., Toews, A.D., and Morell, P. (2002). Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 82, 126-136.   DOI
38 Kim, H.T., Kim, I.H., Lee, K.J., Lee, J.R., Park, S.K., Chun, Y.H., Kim, H., and Rhyu, I.J. (2002). Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuroreport 13, 1607-1610.   DOI
39 Kotter, M.R., Setzu, A., Sim, F.J., Van Rooijen, N., and Franklin, R.J. (2001). Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204-212.   DOI
40 Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.   DOI
41 Kotter, M.R., Zhao, C., van Rooijen, N., and Franklin, R.J. (2005). Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. Dis. 18, 166-175.   DOI
42 Kotter, M.R., Li, W.W., Zhao, C., and Franklin, R.J. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328-332.   DOI
43 Lau, L.W., Keough, M.B., Haylock-Jacobs, S., Cua, R., Doring, A., Sloka, S., Stirling, D.P., Rivest, S., and Yong, V.W. (2012). Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann. Neurol. 72, 419-432.   DOI
44 Lee, Y., Morrison, B.M., Li, Y., Lengacher, S., Farah, M.H., Hoffman, P.N., Liu, Y., Tsingalia, A., Jin, L., Zhang, P.W., et al. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443-448.   DOI
45 Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707-717.   DOI