Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.4.225

The role of neuroinflammation on the pathogenesis of Parkinson's disease  

Chung, Young-Cheul (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Ko, Hyuk-Wan (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Bok, Eu-Gene (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Park, Eun-Soo (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Huh, Sue-Hee (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Nam, Jin-Han (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Jin, Byung-Kwan (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
Publication Information
BMB Reports / v.43, no.4, 2010 , pp. 225-232 More about this Journal
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.
Keywords
Astrocyte; BBB leakage; Infiltration of peripheral immune cells; Microglia; Parkinson's disease;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 22
연도 인용수 순위
1 Hirsch, E. C. and Hunot, S. (2009) Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet. Neurol. 8, 382-397   DOI   ScienceOn
2 Saavedra, A., Baltazar, G., Santos, P., Carvalho, C. M. and Duarte, E. P. (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol. Dis. 23, 533-542   DOI   ScienceOn
3 Jakel, R. J., Townsend, J. A., Kraft, A. D. and Johnson, J. A. (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 1144, 192-201   DOI   PUBMED   ScienceOn
4 Kurkowska-Jastrzebska, I., Litwin, T., Joniec, I., Ciesielska, A. Przybylkowski, A., Czlonkowski, A. and Czlonkowska. A. (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Int. Immunopharmacol. 4, 1307-1318   DOI   ScienceOn
5 Dauer, W. and Przedborski, S. (2003) Parkinson's disease:mechanisms and models. Neuron 39, 889-909   DOI   ScienceOn
6 Greenfield, J. G. and Bosanquet, F. D. (1953) The brainstem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiatry. 16, 213-226   DOI   PUBMED
7 Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98   DOI   ScienceOn
8 Morris, L., Graham, C. F. and Gordon, S. (1991) Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 112, 517-526   PUBMED
9 Giulian, D., Johnson, B., Krebs, J. F., George, J. K. and Tapscott, M. (1991) Microglial mitogens are produced in the developing and injured mammalian brain. J. Cell. Biol. 112, 323-333   DOI   ScienceOn
10 Kreutzberg, G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends. Neurosci. 19, 312-318   DOI   PUBMED   ScienceOn
11 Graeber, M. B., Streit, W. J. and Kreutzberg, G. W. (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21, 18-24   DOI   ScienceOn
12 Nutt, J. G. and Wooten, G. F. (2005) Clinical practice. Diagnosis and initial management of Parkinson's disease. N. Engl. J. Med. 353, 1021-1027   DOI   PUBMED   ScienceOn
13 Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. and Nagatsu, T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 13-16   DOI   ScienceOn
14 Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894   DOI   ScienceOn
15 Danbolt, N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1-105   DOI   PUBMED   ScienceOn
16 Sandhu, J. K., Gardaneh, M., Iwasiow, R., Lanthier, P., Gangaraju, S., Ribecco-Lutkiewicz, M., Tremblay, R., Kiuchi, K. and Sikorska, M. (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol. Dis. 33, 405-414   DOI   ScienceOn
17 Voutilainen, M. H., Back, S., Porsti, E., Toppinen, L., Lindgren, L., Lindholm, P., Peranen, J., Saarma, M. and Tuominen, R. K. (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease. J. Neurosci. 29, 9651-9659   DOI   ScienceOn
18 Ghosh, A., Roy, A., Matras, J., Brahmachari, S., Gendelman, H. E. and Pahan, K. (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J. Neurosci. 29, 13543-13556   DOI   ScienceOn
19 Choi, D. K., Pennathur, S., Perier, C., Tieu, K., Teismann, P., Wu, D. C., Jackson-Lewis, V., Vila, M., Vonsattel, J. P., Heinecke, J. W. and Przedborski. S. (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci. 25, 6594-6600   DOI   ScienceOn
20 Kurkowska-Jastrzebska, I., Babiuch, M., Joniec, I., Przybylkowski, A., Czlonkowski, A. and Czlonkowska, A. (2002) Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int Immunopharmacol 2, 1213-1218   DOI   ScienceOn
21 Faucheux, B. A., Bonnet, A. M., Agid, Y. and Hirsch, E. C. (1999) Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet 353, 981-982   PUBMED
22 Tieu, K., Ischiropoulos, H. and Przedborski. S. (2003) Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life 55, 329-335   DOI   ScienceOn
23 McGeer, P. L. and McGeer, E. G. (2008) Glial reactions in Parkinson's disease. Mov. Disord. 23, 474-483   DOI   ScienceOn
24 Block, M. L. and Hong, J. S. (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 35, 1127-1132   DOI   ScienceOn
25 Li, G., Cui, G., Tzeng, N. S., Wei, S. J., Wang, T., Block, M. L. and Hong, J. S. (2005) Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J. 19, 489-496   DOI   ScienceOn
26 Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T. and Hong, J. S. (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550-557   DOI   ScienceOn
27 Rodriguez-Pallares, J., Parga, J. A., Munoz, A., Rey, P., Guerra, M. J. and Labandeira-Garcia, J. L. (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamineinduced degeneration of dopaminergic neurons. J. Neurochem. 103, 145-156   PUBMED
28 Knott, C., Stern, G. and Wilkin, G. P. (2000) Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16, 724-739   DOI   ScienceOn
29 Klevenyi, P., Andreassen, O., J. Ferrante, R. J., Schleicher, R., Jr., Friedlander, R. M. and Beal, M. F. (1999) Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport 10, 635-638   DOI   ScienceOn
30 Chesselet, M. F. (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp. Neurol. 209, 22-27   DOI   PUBMED   ScienceOn
31 Tower, D. B. and Young, O. M. (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J. Neurochem. 20, 269-278   DOI   PUBMED
32 Wilhelmsson, U., Bushong, E. A., Price, D. L., Smarr, B. L., Phung, V., Terada, M., Ellisman, M. H. and Pekny, M. (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci. U.S.A. 103, 17513-17518   DOI   ScienceOn
33 Arimoto, T. and Bing, G. (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol. Dis. 12, 35-45   DOI   ScienceOn
34 Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N. and Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197-211   DOI   ScienceOn
35 Savitt, J. M., Dawson, V. L. and Dawson, T. M. (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744-1754   DOI   ScienceOn
36 Stack, E. C., Ferro, J. L., Kim, J., Del Signore, S. J., Goodrich, S., Matson, S., Hunt, B. B., Cormier, K., Smith, K., Matson, W. R., Ryu, H. and Ferrante, R. J. (2008) Therapeutic attenuation of mitochondrial dysfunction and oxidative stress in neurotoxin models of Parkinson's disease. Biochim. Biophys. Acta. 1782, 151-162   DOI   PUBMED   ScienceOn
37 Woodroofe, M. N., Bellamy, A. S., Feldmann, M., Davison, A. N. and Cuzner, M. L. (1986) Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J. Neurol. Sci. 74, 135-152   DOI   PUBMED   ScienceOn
38 Orr, C. F., Rowe, D. B. and Halliday, G. M. (2002) An inflammatory review of Parkinson's disease. Prog. Neurobiol. 68, 325-340   DOI   ScienceOn
39 Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H. and Przedborski, S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763-1771   PUBMED
40 Fornai, F., Schluter, O. M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., Lazzeri, G., Busceti, C. L., Pontarelli, F., Battaglia, G., Pellegrini, A., Nicoletti, F., Ruggieri, S., Paparelli, A. and Sudhof, T. C. (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alphasynuclein. Proc. Natl. Acad. Sci. U.S.A. 102, 3413-3418   DOI   PUBMED   ScienceOn
41 Lawson, L. J., Perry, V. H., Dri, P. and Gordon, S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151-170   DOI   ScienceOn
42 Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C. and MacVicar, B. A. (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745-749   DOI   ScienceOn
43 Anastasia, A., Torre, L., de Erausquin, G. A. and Masco, D. H. (2009) Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson's disease. J. Neurochem. 109, 755-765   DOI   ScienceOn
44 Kortekaas, R., Leenders, K. L., van Oostrom, J. C., Vaalburg, W., Bart, J., Willemsen, A. T. and Hendrikse, N. H. (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176-179   DOI   ScienceOn
45 Ferger, B., Leng, A., Mura, A., Hengerer, B. and Feldon, J. (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 89, 822-833   DOI   ScienceOn
46 Sriram, K., Matheson, J. M., Benkovic, S. A., Miller, D. B., Luster, M. I. and O'Callaghan, J. P. (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J. 16, 1474-1476   DOI   PUBMED
47 Miller, R. L., James-Kracke, M., Sun, G. Y. and Sun, A. Y. (2009) Oxidative and inflammatory pathways in Parkinson's disease. Neurochem. Res. 34, 55-65   DOI   ScienceOn
48 Kim, S. R., Chung, E. S., Bok, E., Baik, H. H., Chung, Y. C., Won, S. Y., Joe, E., Kim, T. H., Kim, S. S., Jin, M. Y., Choi, S. H. and Jin, B. K. (2009) Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J. Neurosci. Res. (Epub ahead of print)
49 Choi, S. H., Lee, D. Y., Chung, E. S., Hong, Y. B., Kim, S. U. and Jin, B. K. (2005) Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J. Neurochem. 95, 1755-1765   DOI   ScienceOn
50 Meredith, G. E., Sonsalla, P. K. and Chesselet, M. F. (2008) Animal models of Parkinson's disease progression. Acta. Neuropathol. 115, 385-398   DOI   ScienceOn
51 Chen, X., Lan, X., Roche, I., Liu, R. and Geiger, J. D. (2008) Caffeine protects against MPTP-induced bloodbrain barrier dysfunction in mouse striatum. J. Neurochem. 107, 1147-1157   PUBMED
52 Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K. and Nagatsu, T. (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208-210   DOI   PUBMED   ScienceOn
53 Morale, M. C., Serra, P. A., L'Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., Gennuso, F., Giaquinta, G., Rocchitta, G., Desole, M. S., Miele, E. and Marchetti. B. (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138, 869-878   DOI   ScienceOn
54 Persidsky, Y., Ramirez, S. H., Haorah, J. and Kanmogne, G. D. (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune. Pharmacol. 1, 223-236   DOI   ScienceOn
55 Zlokovic, B. V. (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178-201   DOI   PUBMED   ScienceOn
56 Kim, S. U. and de Vellis, J. (2005) Microglia in health and disease. J. Neurosci. Res. 81, 302-313   DOI   ScienceOn
57 Hirsch, E. C., Hunot, S., Damier, P. and Faucheux, B. (1998) Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? Ann. Neurol. 44, S115-120   DOI   PUBMED   ScienceOn
58 Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., Dawson, V. L., Dawson, T. M. and Przedborski, S. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403-1409   DOI   ScienceOn
59 Yan, E., Castillo-Melendez, M., Nicholls, T., Hirst, J. and Walker, D. (2004) Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr. Res. 55, 855-863   DOI   ScienceOn
60 Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H. and Przedborski, S. (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 6145-6150   DOI   ScienceOn
61 Siebert, A., Desai, V., Chandrasekaran, K., Fiskum, G. and Jafri, M. S. (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J. Neurosci. Res. 87, 1659-1669   DOI   ScienceOn
62 Rite, I., Machado, A., Cano, J. and Venero, J. L. (2007) Bloodbrain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J. Neurochem. 101, 1567-1582   DOI   ScienceOn
63 Ji, K. A., Yang, M. S., Jeong, H. K., Min, K. J., Kang, S. H., Jou, I. and Joe, E. H. (2007) Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 55, 1577-1588   DOI   ScienceOn
64 Gao, H. M., Liu, B., Zhang, W. and Hong, J. S. (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J. 17, 1954-1956   DOI   PUBMED
65 Brochard, V., Combadiere, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C. and Hunot, S. (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182-192   PUBMED
66 Stence, N., Waite, M. and Dailey, M. E. (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33, 256-266   DOI   ScienceOn
67 Knott, C., Stern, G., Kingsbury, A., Welcher, A. A. and Wilkin, G. P. (2002) Elevated glial brain-derived neurotrophic factor in Parkinson's diseased nigra. Parkinsonism. Relat. Disord. 8, 329-341   DOI   ScienceOn
68 Min, K. J., Yang, M. S., Kim, S. U., Jou, I. and Joe, E. H. (2006) Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 26, 1880-1887   DOI   ScienceOn
69 Choi, S. H., Joe, E. H., Kim, S. U. and Jin, B. K. (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 5877-5886   PUBMED
70 Yasuda, T., Fukuda-Tani, M., Nihira, T., Wada, K., Hattori, N., Mizuno, Y. and Mochizuki, H. (2007) Correlation between levels of pigment epithelium-derived factor and vascular endothelial growth factor in the striatum of patients with Parkinson's disease. Exp. Neurol. 206, 308-317   DOI   ScienceOn
71 Le, W. D., Rowe, D. B., Jankovic, J., Xie, W. and Appel, S. H. (1999) Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch. Neurol. 56, 194-200   DOI   ScienceOn
72 Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., Schultzberg, M. and Bogdanovic, N. (2009) Blood-brain barrier alterations in ageing and dementia. J. Neurol. Sci. 283, 99-106   DOI   PUBMED   ScienceOn
73 Chen, P. S., Peng, G. S., Li, G., Yang, S., Wu, X., Wang, C. C., Wilson, B., Lu, R. B., Gean, P. W., Chuang, D. M. and Hong, J. S. (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol. Psychiatry. 11, 1116-1125   DOI   ScienceOn
74 McGeer, P. L., Itagaki, S., Boyes, B. E. and McGeer, E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291   DOI   PUBMED
75 Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y. and Hirsch. E. C., (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363   DOI   ScienceOn
76 Mulligan, S. J. and MacVicar, B. A. (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195-199   DOI   ScienceOn
77 Siegel, G. J. and Chauhan, N. B. (2000) Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain. Res. Brain. Res. Rev. 33, 199-227   DOI   PUBMED   ScienceOn
78 Nimmerjahn, A., Kirchhoff, F. and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318   DOI   PUBMED   ScienceOn
79 Whitton, P. S. (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Pharmacol. 150, 963-976   DOI   PUBMED   ScienceOn