• Title/Summary/Keyword: microarray analysis

Search Result 891, Processing Time 0.03 seconds

Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Moreno, Jose;Jacome-Lopez, Karina;Zentella-Dehesa, Alejandro;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2519-2525
    • /
    • 2016
  • There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile.

Developing a Parametric Method for Testing the Significance of Gene Sets in Microarray Data Analysis (마이크로어레이 자료분석에서 모수적 방법을 이용한 유전자군의 유의성 검정)

  • Lee, Sun-Ho;Lee, Seung-Kyu;Lee, Kwang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.397-408
    • /
    • 2009
  • The development of microarray technology makes possible to analyse many thousands of genes simultaneously. While it is important to test each gene whether it shows changes in expression associated with a phenotype, human diseases are thought to occur through the interactions of multiple genes within a same functional cafe-gory. Recent research interests aims to directly test the behavior of sets of functionally related genes, instead of focusing on single genes. Gene set enrichment analysis(GSEA), significance analysis of microarray to gene-set analysis(SAM-GS) and parametric analysis of gene set enrichment(PAGE) have been applied widely as a tool for gene-set analyses. We describe their problems and propose an alternative method using a parametric analysis by adopting normal score transformation of gene expression values. Performance of the newly derived method is compared with previous methods on three real microarray datasets.

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF

Comparison of methods for the proportion of true null hypotheses in microarray studies

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2020
  • We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing setups; however, false discovery rate (FDR) has received significant attention in many research areas such as GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account for unknown dependence structures among genes in microarray data in order to estimate the proportion of true null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost similar values of the estimated proportion of true null hypotheses in microarray data.

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes (장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴)

  • Bae, Yun-Ui;Moon, Ik-Jae;Seu, Young-Bae;Doh, Kyung-Oh
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects

  • Cho, Seo-Ae;Lee, Eun-Jee;Kim, Young-Chul;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.

PathTalk: Interpretation of Microarray Gene-Expression Clusters in Association with Biological Pathways

  • Chung, Tae-Su;Chung, Hee-Joon;Kim, Ju-Han
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.124-128
    • /
    • 2007
  • Microarray technology enables us to measure the expression of tens of thousands of genes simultaneously under various experimental conditions. Clustering analysis is one of the most successful methods for analyzing microarray data using the assumption that co-expressed genes may be co-regulated. It is important to extract meaningful clusters from a long unordered list of clusters and to evaluate the functional homogeneity and heterogeneity of clusters. Many quality measures for clustering results have been suggested in different conditions. In the present study, we consider biological pathways as a collection of biological knowledge and used them as a reference for measuring the quality of clustering results and functional homogeneities. PathTalk visualizes and evaluates functional relationships between gene clusters and biological pathways.

Unsupervised Clustering of Multivariate Time Series Microarray Experiments based on Incremental Non-Gaussian Analysis

  • Ng, Kam Swee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Sun-Hee;Anh, Nguyen Thi Ngoc
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • Multiple expression levels of genes obtained using time series microarray experiments have been exploited effectively to enhance understanding of a wide range of biological phenomena. However, the unique nature of microarray data is usually in the form of large matrices of expression genes with high dimensions. Among the huge number of genes presented in microarrays, only a small number of genes are expected to be effective for performing a certain task. Hence, discounting the majority of unaffected genes is the crucial goal of gene selection to improve accuracy for disease diagnosis. In this paper, a non-Gaussian weight matrix obtained from an incremental model is proposed to extract useful features of multivariate time series microarrays. The proposed method can automatically identify a small number of significant features via discovering hidden variables from a huge number of features. An unsupervised hierarchical clustering representative is then taken to evaluate the effectiveness of the proposed methodology. The proposed method achieves promising results based on predictive accuracy of clustering compared to existing methods of analysis. Furthermore, the proposed method offers a robust approach with low memory and computation costs.