References
- Baldi P and Hatfield W (2002). DNA Microarrays and Gene Expression, Cambridge University Press, Cambridge.
- Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society: Series B, 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
- Benjamini Y and Hochberg Y (2000). On the adaptive control of the false discovery rate in multiple testing with independent Statistics, Journal of Educational and Behavioral Statistics, 25, 60-83. https://doi.org/10.3102/10769986025001060
- Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, 29, 1165-1188. https://doi.org/10.1214/aos/1013699998
- Churchill G (1992). Hidden Markov chains and the analysis of genome structure, Computers and Chemistry, 16, 107-115. https://doi.org/10.1016/0097-8485(92)80037-Z
- Ephraim Y and Merhav N (2002). Hidden Markov processes, IEEE Transactions on Information Theory, 48, 1518-1569. https://doi.org/10.1109/TIT.2002.1003838
- Jiang H and Doerge RW (2008). Estimating the proportion of true null hypotheses for multiple comparisons, Cancer Informatics, 6, 25-32.
- Jin J and Cai TT (2007). Estimating the null and the proportion of non-null effects in large-scale multiple comparisons, Journal of the American Statistical Association, 102, 495-506. https://doi.org/10.1198/016214507000000167
- Krogh A, Brown M, Mian I, Sjolander K, and Haussler D (1994). Hidden Markov models in computational biology. Applications to protein modeling, Journal of Molecular Biology, 235, 1501-1531. https://doi.org/10.1006/jmbi.1994.1104
- Langaas M, Lindqvist BH, and Ferkingstad E (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data, Journal of the Royal Statistical Society: Series B, 67, 555-572. https://doi.org/10.1111/j.1467-9868.2005.00515.x
- Nettleton D, Hwang JTG, Caldo RA, and Wise RP (2006). Estimating the number of true null hypotheses from a histogram of p values, Journal of Agricultural, Biological, and Environmental Statistics, 11, 337-356. https://doi.org/10.1198/108571106X129135
- Pounds S and Cheng C (2006). Robust estimation of the false discovery rate, Bioinformatics, 22, 1979-1987. https://doi.org/10.1093/bioinformatics/btl328
- Rabiner L (1989). A tutorial on hidden Markov models and selected applications in speech recognition, IEEE, 77, 257-286. https://doi.org/10.1109/5.18626
- Speed T (2003). Statistical Analysis of Gene Expression Microarray Data, Chapman and Hall/CRC, New York.
- Storey JD (2002). A direct approach to false discovery rates, Journal of the Royal Statistical Society: Series B, 64, 479-498. https://doi.org/10.1111/1467-9868.00346
- Storey JD, Taylor JE, and Siegmund D (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach, Journal of the Royal Statistical Society: Series B, 66, 187-205. https://doi.org/10.1111/j.1467-9868.2004.00439.x
- Storey JD and Tibshirani R (2003). Statistical significance for genomewide studies. In Proceedings of the National Academy of Sciences, 100, 9440-9445. https://doi.org/10.1073/pnas.1530509100
- Sun W and Cai TT (2009). Large-scale multiple testing under dependence, Journal of the Royal Statistical Society: Series B, 71, 393-424. https://doi.org/10.1111/j.1467-9868.2008.00694.x
- Van't Wout AB, Lehrman GK, Mikheeva SA, O'Keeffe GC, Katze MG, Bumgarner RE, Geiss GK, and Mullins JI (2003). Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines, Journal of Virology, 77, 1392-1402. https://doi.org/10.1128/JVI.77.2.1392-1402.2003
- Wang HQ, Tuominen LK, and Tsai CJ (2011). SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures, Bioinformatics, 27, 225-231. https://doi.org/10.1093/bioinformatics/btq650