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Comparison of methods for the proportion of true null
hypotheses in microarray studies
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Abstract

We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional
multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing
setups; however, false discovery rate (FDR) has received significant attention in many research areas such as
GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies
involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account
for unknown dependence structures among genes in microarray data in order to estimate the proportion of true
null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various
procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data
with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias
and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data
under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost
similar values of the estimated proportion of true null hypotheses in microarray data.
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1. Introduction

We introduce a DNA microarray data that possesses gene expression levels in thousands of genes
(Speed, 2003; Baldi and Hatfield, 2002). This study then simultaneously examines differentially
expression genes among thousands of genes, which involves an appropriate simultaneous testing per
each gene. The null hypothesis is to announce no association between gene expression levels and
explanatory variables (Speed, 2003). For instance, microarray analysis could be conducted to examine
differences in gene expression levels between cancer patients and healthy patient.

Applying the multiple testing framework to a microarray data, a true null hypothesis indicates no
differentially expressed gene, whereas a non-true null hypothesis is a truly differentially expressed
gene. Rejected hypothesis (gene) implies that this specific gene is declared as a differentially ex-
pressed gene (Table 1).

An older method in multiple testing framework is the family-wise error rate (FWER) defined as
the probability of having any type I error among all hypotheses at assigned level . However, it is
too conservative to use when dealing with thousands of hypotheses (genes) as well as inadequate to
test thousands of highly dependent genes (Benjamini and Yekutieli, 2001). The alternative to this
FWER is the false discovery rate (FDR) which Benjamini and Hochberg (1995) introduced. It is

! Department of Information Statistics, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung-si 25457, Re-
public of Korea. E-mail: mkang @gwnu.ac.kr

Published 31 January 2020/ journal homepage: http://csam.or.kr
©2020 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



142 Joonsung Kang

Table 1: Multiple hypothesis testing

Not rejected Rejected Total
True null U \% mg
Non-true null T S m—my
Total U+T=m-R V+S =R m

defined as the expected proportion of type I errors among the rejected hypotheses (genes) such as
E(V/RIR > 0) - P(R > 0). The proportion of true null hypotheses should be estimated in advance in
order to control the FDR.

A dependent structure among the genes should be taken into account for the microarray data.
Many researchers have developed various estimation procedures to assume a restricted dependent
structure among genes and have estimated the proportion of true null hypotheses in a restricted or
unrealistic manner. A dependent structure among genes in microarray studies is often unknown. The
hidden Markov model (HMM) model exploits the local dependence structure and has been widely
used in areas such as speech recognition, signal processing and DNA sequence analysis, see Rabiner
(1989), Churchill (1992), Krogh et al. (1994), and Ephraim and Merhav (2002), among others (Sun
and Cai, 2009). The HMM model is known to be more similar to the dependence structure among gene
expression levels in microarray studies because it accounts for the observations in adjacent locations
among genes (Sun and Cai, 2009). This study compares the performance of different estimation
procedures for the proportion of true null hypotheses (genes) under realistic dependency structures.
The HMM model known as a statistical Markov model is utilized when we believe that the system
being modeled has a Markov process with unobserved (hidden) states. The HMM is shown to be
an effective mechanism for modeling the dependence structure among genes. In a multiple testing
framework, the HMM model shows that the sequence of the hidden states, @) = O1,...,0m) follows
a Markov chain. 6; = 1 if the i’ hypothesis is non-null and 6; = 0 if the /" hypothesis is true-null.
Observed data x = (x1, ..., x,,) are independently created conditionally on the hidden states (6;)]". See
Sun and Cai (2009) for more details.

We consider the 9 most popular estimation procedures of the proportion of true null hypotheses
as below. The least slope method (Benjamini and Hochberg, 2000), the smoother method described
in Storey and Tibshirani (2003), the bootstrap method (Storey et al., 2004), the Langaas method
using a convex decreasing density estimate for p-values (Langaas et al., 2005), the histogram method
(Nettleton et al., 2006), the average estimate method (Jiang and Doerge, 2008), the sliding linear
model (SLIM) method of Wang ef al. (2011) using a sliding linear model, the estimation method
described in Jin and Cai (2007), and the robust method proposed by Pounds and Cheng (2006) are
compared under the independent simulated data, the HMM model simulated data, and real microarray
data. We compute estimates and standard errors in simulated data to evaluate the performance of each
estimation procedure. We also conduct a real data analysis with the 9 procedures.

Section 2 introduces different estimation procedures. In Section 3, simulation studies are con-
ducted under independence and the HMM dependence structure by comparing the procedures. In
Section 4, real data analysis is tested with the value of each estimation procedure. The summary of
this paper is devoted to the last Section 5.

2. 9 estimation procedures

The hypotheses, Hy, ..., H,, correspond to p-values, Py,..., P,. The p-values are assorted in ascend-
ing order denoted as Py, ..., Pgy. The least slope method (Benjamini and Hochberg, 2000) utilizes
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the Lowest SLope (LSL) estimator (1 — p))/(m + 1 — i) as the slope of the line passing through the
points (m + 1, 1) and (i, p(;)). We follow the steps:

e Calculate S; = (1 — p)/(m+ 1 —1i), the i slope estimate.

e Starting withi = 1, proceed towards larger i as long as §; > §,_;, stop when the first time S ; < § ;_y,
and use the proportion of true null hypotheses #tp = min[(1/S ; + 1), m].

The smoother method (Storey and Tibshirani, 2003) estimates the proportion of true null hypotheses
as g = #{p; > A}/m(1 — A) with the turning parameter A.

The bootstrap method (Storey et al., 2004) has the step as follows. Define R(1) = #{p; : p; < A}
and W(1) = m — R(1). We define the proportion of true null hypotheses as 79 = W(1)/{(1 — D)m}.

The rationale for this estimate is that p-values for true null hypotheses are uniformly distributed
on the interval (0, 1). They proposed a bootstrap method to automatically choose A when estimating
fo(A).

The Langaas method utilizes a convex decreasing density estimate for p-values (Langaas et al.,
2005). The p-values are independent and identically distributed random variables with mixture den-
sity

f(p)=m+ A -moh(p), 0<p<l

We assume that £ is decreasing on [0, 1] with A(1) = 0, which implies that 1y = f(1). A way of
estimating g is through the estimation of f. Nonparametric estimators for f can be used with the
special structure that we impose on f, namely decreasing property and convexity (and decreasing
property) by requiring A(p) to be convex in addition to decreasing with /(1) = 0.

By transforming the density f confined to [py, 1] to a density f* on [0, 1] given by f*(p) = f =
(= py)/p+po)-(A=poire, 0 < p < 1 with ryg = #{p; > po}/m, we transform the p-values to
p; = (pi = po)/(1 = po) with p; > po, which gives us an estimated function f* with the transformed
p-values and a corresponding estimate 7" = F*(1). The proposed estimate of 7y is #yro/(1 = po).

As for the histogram method (Nettleton et al., 2006), an iterative algorithm that depends on a
histogram of observed p-values shown in order to obtain the estimator. The limit of that iterative
algorithm is characterized and shows that the estimator could be computed directly without iteration.

The proposed method (Pounds and Cheng, 2006) does not depend on assumptions that the tests
are two-sided or produce continuously distributed p-values. The proposed method is proven to be
conservative and has desirable large-sample properties. We estimate my as follows. We consider four
cases: (a) p-values are two-sided and continuous, (b) p-values are two-sided and discrete, (c) p-
values are one-sided and continuous, and (d) p-values are one-sided and discrete. p = (1/m) 22, pi
and a = (1/m) 32, a;, where a; = 2min(p;, 1 — p;). o is computed as min(1, 2p) for cases (a) and
(b). For case (c), it is defined as min(1, 2a). For case (d), 7 is min(1, 8a).

For the average estimate method (Jiang and Doerge, 2008), we estimate the proportion of true null
hypotheses n(B) as follows. We define 0 =1, < #, < --- < fg < tg+1 = 1 as equally spaced points in
the interval [0, 1] such that the interval [0, 1] is divided into B small intervals with equal length 1/B.
Let NB; denote the number of p-values greater than or equal to #; and NS; represent the number of
p-values in the interval of [¢;, ;11).

NB; }

X 1 & .
#(B) = m;ﬂ NBj(1—tpm, i= mln{l NS S g
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The value of 7 is estimated by the average of the y(B) over the average of B for each B € I for some
interval 1.

From the basic non-linear model of the g-value method described in Storey (2002), a simple
linear algorithm is developed to probe local dependence blocks, resulting in uncovering a non-static
relationship between p-values and corresponding g-values influenced by the data structure and 7y. By
an optimization framework, these findings were used to propose a SLIM as a more reliable estimate
1o under dependent data (Wang et al., 2011). Let y = mgA+ ;. The (4, y) plot presents the cumulative
probability distribution of p-values.

We calculate the slope of that fitting line as the estimated my. Thus, g = (y. — ¥s)/(1e — A;) for
a given range of 4,A = [4,4.], 0.05 < A; < A, < 1, where y, and 7y, represent the cumulative
probabilities at A; and A,. For a uniform p-value distribution, the above equation may be applied
directly for 7y estimation. However, we use the following strategy with non-uniform p-value distribu-
tions in order to keep as much information as possible about the null hypotheses p-value distribution.
We first divide the (4,7y) plot into a series of A-segments (S) where S = {s; : s; = [4;, 4]},
0.05 < 41 < A £+ £ A1 = 1. We then linearly regress by A with the slope equation for each
segment and obtain n local estimates of ﬁf) = 7to(A;, Aix1), i = 1,...,nin accordance with §S.

Then the estimate my = D'(a) represents the cumulative distribution function of ﬁg. D' represents
its inverse (quantile) function, and 0 < @ < 1 represents a given quantile point.

Jin and Cai (2007) develops an approach based on the empirical characteristic function and Fourier
analysis. The estimators are shown to be uniformly consistent over a wide class of parameters. They
extend their approach to dependent data structures. Please see Jin and Cai (2007) for more details.

2.1. Dependence

In order to model the HMM, we need to utilize the notion of transition matrix with two states (0 and
1). Transition matrix is varied as:

n-lam o)
S
SR
o[ 03 020
r-[ 0 o)
[0 0]
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2.9)

0.10 0.90
o ‘[ 0.80 0.20 }

The transition probability that a system goes a movement from state O (no differentially expressed
gene) to state 1 (differentially expressed gene) or from state 1 to state O is constant over time. In the
matrix, diagonal terms are generally not transitions of states such as from state 0 to state O or from
state 1 to state 1. T1,7T2,...,T9 possess different transition probabilities (instantaneous rates). For
example, the probability moving from O to 1 in 7'1 is 0.90, that in 74 0.50, and that in 77 0.10.

The conditional probability of future states relies only upon the present state in the Markov chain.
We could consider m hypotheses as a Markov chain with m states. The dependencies moving from
state 0 in the present state to state 1 in the future state are sorted in descending order. If the present
state (the i hypothesis) is 0, the probability (extent) moving from the current state to state 1 in future
state (the (i + 1) hypothesis) is 0.10 for T1. T1,T2,...,T9 have different dependency patterns
between 0 and 1. Please refer to Sun and Cai (2009) for more details.

3. Numerical analysis
3.1. Simulation study

The least slope method (ABH), the smoother method (Spline), the bootstrap method (Boot), the lan-
gaas method with a convex decreasing density estimate (Langaas), the histogram method (Histo), the
average method (Jiang), the SLIM method (SLIM), the robust method (Pounds) and the Jin and Cai
method (Cai) (Jin and Cai, 2007) are assessed under independent simulated data, the HMM model
simulated data under various setups, and real microarray data. Estimates and standard errors are
calculated for each estimation procedure.

We present 9 estimation procedures in an independent data with a different true proportion of true
null 7y (= 0.25,0.50,0.75) and w; (the mean under the alternative).

For the independence case, we simulate 1,000 independent normal random variables T;, i =
1,..., 1000 with the variance 1 and common correlation p = 0. 1,000 two-sided hypothesis tests
are conducted with up = 0 against y; = 1,2,3 (the mean under the alternative) using each of 9
procedures. Each individual hypothesis is tested by a z-test.

In a dependent simulation case, we model the two hidden state HMM (0 and 1) with a varying
transition probability matrix in the previous section. We utilize Welsch #-test statistics for the p-value
for each hypothesis.

3.2. Independence

Table 2 summarizes the result for independent p-values for Gaussian random variables. Cai procedure
and SLIM procedures have better performance in that they have smaller biases and standard errors
under all configurations of independent structures; however, Langaas, Spline, Boot, and ABH have
larger biases and standard errors compared to other procedures.

3.3. Dependence

As transition matrix varies, we compute each 77y and a standard error of each estimator in Table 3. Cai
procedure and SLIM procedure have relatively better performance in that they have smaller biases
and standard errors under all configurations of dependent structures; however, Langaas, Spline, Boot,
and ABH have larger biases and standard errors compared to other procedures.
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Table 2: Independent p-values: each 7,: an estimated proportion of true null hypotheses for Spline, Boot, Jiang,

Histo, Langaas, Pounds, ABH, SLIM, and Cai

M1 b Spline Boot Jiang Histo Langaas Pounds ABH SLIM Cai

025 0.5500 0.5430 0.4770 0.4900 0.5415 0.4877 0.6104 0.3215 0.2356
(0.3572)  (0.3461)  (0.2673)  (0.3152)  (0.3162)  (0.2861)  (0.4157)  (0.1963)  (0.1952)

. 050 0.7299 0.6171 0.5335 0.5364 0.5951 0.5846 0.6104 0.4286 0.4985
(0.3532)  (0.2186)  (0.1565)  (0.1623)  (0.1603)  (0.1612)  (0.3642)  (0.1055)  (0.0864)

075 0.8324 0.8313 0.7846 0.8165 0.6951 0.7134 0.6104 0.7219 0.7386
(0.3805)  (0.1972)  (0.1329)  (0.1294)  (0.1603)  (0.1419)  (0.3914)  (0.1198)  (0.0785)

025 0.5610 0.5391 0.4691 0.4896 0.5512 0.4912 0.6084 0.3175 0.2413
(0.3467)  (0.3378)  (0.2631)  (0.3254) (0.3098)  (0.2918)  (0.3981) (0.1895)  (0.1823)

2 050 0.7177 0.6319 0.5413 0.5429 0.6019 0.5912 0.6409 0.4809 0.4998
(0.3742)  (0.2218)  (0.1618)  (0.1719)  (0.1579)  (0.1701)  (0.3591)  (0.1193)  (0.0711)

075 0.8264 0.8516 0.7984 0.8093 0.6991 0.7231 0.6104 0.7410 0.7485
(0.3519)  (0.3609)  (0.1410)  (0.1310)  (0.1578)  (0.1092)  (0.4109)  (0.0909) (0.0682)

025 0.4811 0.4491 0.4519 0.4789 0.5029 0.4892 0.6139 0.3091 0.2331
) (0.3561)  (0.3451)  (0.2718)  (0.3348)  (0.2966)  (0.2798)  (0.4001)  (0.1886)  (0.1765)
3050 0.6156 0.6291 0.5542 0.5324 0.5967 0.6589 0.6340 0.4798 0.4999
) (0.3697)  (0.2315)  (0.2234)  (0.1698)  (0.1498)  (0.1688)  (0.3610)  (0.1210)  (0.0691)

075 0.8109 0.8402 0.7975 0.7654 0.6580 0.7368 0.6291 0.7443 0.7495
’ (0.3509)  (0.3598)  (0.1409) (0.1309) (0.1569)  (0.1066)  (0.4091) (0.0889)  (0.0661)

mo: a true proportion of true null hypotheses, ( ): a standard error of an estimator and y: the mean under the alternative.
Spline = smoother method; Boot = bootstrap method; Jiang = average method; Histo = histogram method; Langaas =
Langaas method with a convex decreasing density estimate; Pounds = robust method; ABH = least slope method; SLIM
= sliding linear model method; Cai = Jin and Cai method.

Table 3: Dependent p-values: each 7y: an estimated proportion of true null hypotheses for Spline, Boot, Jiang,
Histo, Langaas, Pounds, ABH, SLIM, and Cai

Tl;:;stglfn ) Spline Boot Jiang Histo Langaas  Pounds ABH SLIM Cai
T1 07330 0.9990 0.9717 0.9290 0.9303 0.9477 0.9390 1.0000 0.9200 0.9042
(0.2608) (0.2506) (0.1698) (0.1699) (0.2018) (0.1729) (0.3608) (0.1589) (0.1546)
™ 0.8456 0.9897 0.9799 0.8955 0.9380 0.9620 0.9400 1.0000 0.8654 0.8569
(0.2658) (0.2109) (0.1462) (0.1589) (0.1603) (0.1609) (0.3756) (0.1357) (0.1164)
T3 0.8950 0.9871 0.9698 0.9665 0.9457 0.9620 0.9461 0.9963 0.8837 0.8900
(0.1998) (0.1888) (0.1112) (0.1236) (0.1603) (0.1320) (0.3756) (0.1087) (0.0975)
T4 08826 0.9823 0.9717 0.9125 0.91438 0.9414 0.9308 0.9985 0.9044 0.8977
(0.2965) (0.1865) (0.1131) (0.1248) (0.1686) (0.1319) (0.2995) (0.1067) (0.0825)
Ts 0.8963 0.9716 0.9324 0.9133 0.9156 0.9414 0.9310 0.9966 0.9133 0.9126
(0.2876) (0.1897) (0.1234) (0.1267) (0.1698) (0.1345) (0.2898) (0.0976) (0.0784)
T6 08136 0.9810 0.9708 0.8857 0.9282 0.9707 0.8927 0.9987 0.8823 0.8589
(0.2619) (0.2245) (0.1198) (0.1478) (0.2198) (0.1456) (0.3101) (0.1089) (0.0884)
7 0.8300 0.9822 0.9681 0.9278 0.9480 0.9502 0.9378 0.9999 0.9160 0.9155
(0.3109) (0.2365) (0.1287) (0.1645) (0.1780) (0.1503) (0.3589) (0.1123) (0.0967)
T8 0.9160 0.9678 0.9598 0.9227 0.9333 0.9456 0.9394 0.9897 0.9136 0.9150
(0.3069) (0.2438) (0.1277) (0.1310) (0.2101) (0.1659) (0.3090) (0.1209) (0.1095)
T9 0.8686 0.9780 0.9666 0.9016 0.8019 0.7889 0.8109 0.9888 0.8938 0.8922
(0.3109) (0.2670) (0.1310) (0.1896) (0.2546) (0.1783) (0.3245) (0.1298) (0.1156)

mo: a true proportion of true null hypotheses, ( ): a standard error of an estimator and a transition matrix. Spline =
smoother method; Boot = bootstrap method; Jiang = average method; Histo = histogram method; Langaas = Langaas
method with a convex decreasing density estimate; Pounds = robust method; ABH = least slope method; SLIM = sliding
linear model method; Cai = Jin and Cai method.
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Table 4: Data analysis in Van’t Wout et al. (2003): each 7,: an estimated proportion of true null hypotheses for
Spline, Boot, Jiang, Histo, Langaas, Pounds, ABH, SLIM, and Cai
Spline Boot Jiang Histo Langaas Pounds ABH SLIM Cai
0.8970344  0.9045681 0.8672398  0.9021678 0.9468924  0.8510235 0.9820108 0.8702348  0.8847652
Spline = smoother method; Boot = bootstrap method; Jiang = average method; Histo = histogram method; Langaas =

Langaas method with a convex decreasing density estimate; Pounds = robust method; ABH = least slope method; SLIM
= sliding linear model method; Cai = Jin and Cai method.

4. Application to real data

The microarray data in an HIV study (Van’t Wout ef al., 2003) is analyzed. This study identifies dif-
ferentially expressed genes between HIV positive samples and HIV negative controls. They measured
gene expression levels for 4 HIV-positive patients and 4 HIV-negative controls with 7,680 genes. 7680
two-sample ¢-tests are conducted and two-sided p-values are computed. Preprocessing this raw data
was already done.

Table 4 describes different estimation procedures in real data analysis. Spline, Pounds, SLIM, Cai
and Jiang procedures have relatively similar values of the proportion of true null hypotheses in the
data.

5. Concluding remarks

Analyzing microarray data involves an appropriate multiple testing procedure to control type I error.
Significant attention has been paid to the FDR procedure as a less conservative alternative to the
FWER. So as to control the FDR, we need to compute the proportion of true null hypotheses in a
multiple testing framework. We need to account for the structure since microarray data have high
dependency structure among genes.

We assess various estimation procedures with independent data and dependent data with the HMM
model and conduct real data analysis. Simulation result indicate that Cai and SLIM procedures have
relatively smaller biases and standard errors, being more appropriate for estimating the proportion of
true null hypotheses. Spline, Pounds, SLIM, Cai and Jiang procedures have almost similar values of
the proportion of true null hypotheses in real data analysis.
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