Browse > Article
http://dx.doi.org/10.5351/CKSS.2009.16.3.397

Developing a Parametric Method for Testing the Significance of Gene Sets in Microarray Data Analysis  

Lee, Sun-Ho (Department of Applied Statistics, Sejong University)
Lee, Seung-Kyu (Department of Applied Statistics, Sejong University)
Lee, Kwang-Hyun (Department of Applied Statistics, Sejong University)
Publication Information
Communications for Statistical Applications and Methods / v.16, no.3, 2009 , pp. 397-408 More about this Journal
Abstract
The development of microarray technology makes possible to analyse many thousands of genes simultaneously. While it is important to test each gene whether it shows changes in expression associated with a phenotype, human diseases are thought to occur through the interactions of multiple genes within a same functional cafe-gory. Recent research interests aims to directly test the behavior of sets of functionally related genes, instead of focusing on single genes. Gene set enrichment analysis(GSEA), significance analysis of microarray to gene-set analysis(SAM-GS) and parametric analysis of gene set enrichment(PAGE) have been applied widely as a tool for gene-set analyses. We describe their problems and propose an alternative method using a parametric analysis by adopting normal score transformation of gene expression values. Performance of the newly derived method is compared with previous methods on three real microarray datasets.
Keywords
Microarray experiment; single gene analysis; gene set analysis; normal score;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, 34, 267-273   DOI   ScienceOn
2 Newton, M. A., Quintana, F. A., den Boon, J. A., Sengupta, S. and Ahlquist, P. (2007). Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis, The Annals of Applied Statistics, 1, 85-106   DOI
3 Pavlidis, P., Lewis, D. P. and Noble, W. S. (2002). Exploring gene expression data with class scores, In Proceedings of the Pacific Symposium on Biocomputing, 474-485
4 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge- based approach for interpreting genome-wide expression profiles, PNAS, 102, 15545-15550   DOI   ScienceOn
5 Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, PNAS, 99, 6567-6572   DOI   ScienceOn
6 Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, PNAS, 98, 5116-5121   DOI   ScienceOn
7 Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C and Conklin, B. R. (2003). MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data, Genome Biology, 4, R7   DOI
8 Draghici, S., Khatri, P., Martins, R. P., Ostermeier, G. C. and Krawetz, S. A. (2003). Global functional profiling of gene expression, Genomics, 81, 98-104   DOI   ScienceOn
9 Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes, The Annals of Applied Statistics, 1, 107-129   DOI
10 Goeman, J. J., van de Geer, S. A., de Kort, F. and van Houwelingen, H. C. (2004). A global test for groups of genes: Testing association with a clinical outcome, Bioinformatics, 20, 93-99   DOI   ScienceOn
11 Goeman, J. J., Oosting, J., Cleton-Jansen, A. M., Anninga, J. K. and van Houwelingen, H. C. (2005). Testing association of a pathway with survival using gene expression data, Bioinforrnatics, 21, 1950-1957   DOI   ScienceOn
12 Golub, T. R,, Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537   DOI   ScienceOn
13 Khatri, P., Bhavsar, P., Bawa, G. and Draghici, S. (2004). Onto-Tools: An ensemble of web-accessible, ontology- based tools for the functional design and interpretation of high- throughput gene expression experiments, Nucleic Acids Research, 32, 449-456   DOI   ScienceOn
14 Kim, S. Y. and Voisky, D. J. (2005). PAGE: Parametric analysis of gene set enrichment, BMC Bioinfor-matics, 6, 1471-2105   DOI   ScienceOn
15 Curtis, R. K., Oresic, M. and Vidal-Puig, A. (2005). Pathways to the analysis of microarray data, Trends in Biotechnology, 23, 429-435   DOI   ScienceOn
16 이광현, 이선호 (2008). 절대치와 절삭을 이용한 유전자 집단 분석, <응용통계연구>, 21, 523-535   과학기술학회마을   DOI
17 Barry, W. T., Nobel, A. B. and Wright, F. A. (2005). Significance analysis of functional categories in gene expression studies: A structured permutation approach, Bioinformatics, 21, 1943-1949   DOI   ScienceOn
18 Blom, G. (1958). Statistical Estimates and Transformed Beta- Variables, John Wiley & Sons, New York
19 Damian, D. and Gorfine, M. (2004). Statistical concerns about the GSEA procedure, Nature genetics, 36, 663   DOI   ScienceOn
20 Dinu, I., Potter, J. D., Mueller, T., Adewale, A. J., Jhangri, G. S., Einecke, G., Famulski, K. S., Halloran, P. and Yasui, Y. (2007). Improving GSEA for analysis of biologic pathways for differential gene expression across a binary phenotype, COBRA Preprint Series, Article 16