Browse > Article

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects  

Cho, Seo-Ae (Interdisciplinary Program in Bioinformatics, Seoul National University)
Lee, Eun-Jee (Interdisciplinary Program in Bioinformatics, Seoul National University)
Kim, Young-Chul (Department of Statistics, Seoul National University)
Park, Tae-Sung (Department of Statistics, Seoul National University)
Abstract
The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.
Keywords
Normalization; CFS disease; Microarray; ANOVA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bolstad, B.M., Irizarry, RA, Astrand, M. and Speed, 1.P. (2003). A comparison of normaliza-tion methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193   DOI   ScienceOn
2 Toni W., and Elizabeth R.U. Intergration of gene expression, clinical and epidemiologic data to characterize chronic Fatigue Syndrome. Journal of Translational Medicine
3 Park,T., Vi, S.G., Lee, S.Y. and Lee, J.K. (2005). Diagnostic plots for detecting outlying slides in a cDNA microarray experiment. Bio. Techniques 38, 463-471   DOI   ScienceOn
4 Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V. , Ngai, J. and Speed, T. P. (2002). Normal-ization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15   DOI   ScienceOn
5 Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003). Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264   DOI   ScienceOn
6 Li, C. and Wong, W.H.(2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proceedings ofthe NationalAcademy of Sciences 98,31-36
7 Edwards, D. (2003). Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19, 825-833   DOI   ScienceOn
8 Futschik, M. and Crompton, T. (2004). Model selection and efficiency testing for normalization of cDNA microarray data. Genome Biol. 5, R60   DOI
9 Cui, X. and Churchill, G. A (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome BioI. 4,210   DOI
10 Smyth, G. K. and Speed, T. (2003). Normalization of cDNA microarray data. Methods 31,265-273   DOI   ScienceOn