• Title/Summary/Keyword: micro-projection

Search Result 64, Processing Time 0.02 seconds

The excimer laser ablation of PET for nickel electroforming (니켈 전주도금을 위한 PET의 엑시머 레이저 어블레이션)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation by excimer laser radiation could be used successfully to make 3-D microstructure of PET. The mechanism for ablative decomposition of PET with KrF excimer laser(λ: 248nm, pulse duration: 5ns) was explained by photochemical process. And this process showed PET to be adopted in polymer master for nickel mold insert. Nickel electroforming by using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

  • PDF

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

A Real-time Compact Structured-light based Range Sensing System

  • Hong, Byung-Joo;Park, Chan-Oh;Seo, Nam-Seok;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.193-202
    • /
    • 2012
  • In this paper, we propose a new approach for compact range sensor system for real-time robot applications. Instead of using off-the-shelf camera and projector, we devise a compact system with a CMOS image-sensor and a DMD (Digital Micro-mirror Device) that yields smaller dimension ($168{\times}50{\times}60mm$) and lighter weight (500g). We also realize one chip hard-wired processing of projection of structured-light and computing the range by exploiting correspondences between CMOS images-ensor and DMD. This application-specific chip processing is implemented on an FPGA in real-time. Our range acquisition system performs 30 times faster than the same implementation in software. We also devise an efficient methodology to identify a proper light intensity to enhance the quality of range sensor and minimize the decoding error. Our experimental results show that the total-error is reduced by 16% compared to the average case.

Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses (펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성)

  • Kim, Jae-Gu;Chang, Won-Seok;Cho, Sung-Hak;Whang, Kyung-Hyun;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

A Study on the Laser Direct Imaging for FPD ( I ) (평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.

Resolution Evaluation of a Pinhole Collimator according to the Aperture Diameter using Micro Deluxe Phantom (Micro Deluxe Phantom을 통한 핀홀 콜리메이터 초점의 직경별 분해능 평가)

  • An, Byung Ho;Yeon, Joon Ho;Kim, Soo Young;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.3-11
    • /
    • 2015
  • Purpose It is hard to obtain high quality images of knee and T.M joint because of a lot of soft tissues in the knee and T.M joint area. Most conventional system for high resolution scintigraphy was used by 4 mm aperture pinhole collimator. Performance comparison of high-resolution pinhole SPECT for Micro deluxe phantom using conventional system. the aim of this study is to evaluate performance of each aperture according to the diameter size and the usefulness of 24-hour delayed bone scintigraphy. Materials and Methods In this study 6 mm, 8 mm diameter pinhole collimators were mounted on Siemens E.CAM systems. In order to evaluate performance evaluation of each aperture and Micro Deluxe phantom was used for performance comparison of conventional SPECT system, Projection data were obtained with 9 degree increment per 30 second. Transverse images were reconstructed using dedicated OSEM algorithm with recovery of detector blurring. $^{99m}Tc-HDP$ source was used for 24-hour delayed bone scintigraphy. Results The knee joint images obtained with 24-hour delay were improved more than those obtained with 3-hour delay in our study. The 6 mm and 8 mm pinhole collimators FWHM have improved by 28% SNR and Uniformity have improved by 35%, Contrast has improved by 7% in 24-hour delayed knee joint image. While in 24-hour delayed T.M joint image of the 6 mm and 8 mm pinhole collimators FWHM have decreased by 60% SNR has decreased by 20% and Uniformity has decreased by 25%, Contrast has decreased significantly. Conclusion Pinhole collimators with 6 mm and 8 mm diameter could offer a superior performance for 24-hour delayed bone scintigraphy. The use of 24-hour delayed image provides additional benefits for pinhole scintigraphy of knee joint. Therefore, we expect that it is useful for precise diagnosis of knee joint and it is applicable to others joint imaging.

  • PDF

Observation of Dynamic Movement of Probing Pin on PCB Pad Using Electrical Reliability Test (인쇄회로 기판의 전기검사에서의 미세 탐침과 패드의 동적 거동 현상 관측)

  • Song, Seongmin;Cha, Gangil;Kim, Myungkyu;Jeon, Seungho;Yu, SangSeok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.245-251
    • /
    • 2015
  • In an electrical reliability test of a printed circuit board (PCB), the impact of the micro probing pins on the PCB needs to be checked to ascertain the quality of the circuit. In this study, the impact of the dynamic movement of the probing pin on the pad was observed. As a misaligned pin can exert horizontal force on the pad of the PCB, this study focused on the behavior of a misaligned probing pin. The parameters of observation were the circular and flat edges of the probing pin. The effects of the speed of movement, diameter, and the length of projection of the probing pin were also investigated. The results demonstrated that slippage angle is strongly affected by the shape of the edge of the probing pin, and that projection length is an important factor affecting pin slippage. In contrast, the speed of movement of the probing pin was able to double the slippage angle.

TIR Holographic lithography using Surface Relief Hologram Mask (표면 부조 홀로그램 마스크를 이용한 내부전반사 홀로그래픽 노광기술)

  • Park, Woo-Jae;Lee, Joon-Sub;Song, Seok-Ho;Lee, Sung-Jin;Kim, Tae-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • Holographic lithography is one of the potential technologies for next generation lithography which can print large areas (6") as well as very fine patterns ($0.35{\mu}m$). Usually, photolithography has been developed with two target purposes. One was for LCD applications which require large areas (over 6") and micro pattern (over $1.5{\mu}m$) exposure. The other was for semiconductor applications which require small areas (1.5") and nano pattern (under $0.2{\mu}m$) exposure. However, holographic lithography can print fine patterns from $0.35{\mu}m$ to $1.5{\mu}m$ keeping the exposure area inside 6". This is one of the great advantages in order to realize high speed fine pattern photolithography. How? It is because holographic lithography is taking holographic optics instead of projection optics. A hologram mask is the key component of holographic optics, which can perform the same function as projection optics. In this paper, Surface-Relief TIR Hologram Mask technology is introduced, and enables more robust hologram masks than those previously reported that were formed in photopolymer recording materials. We describe the important parameters in the fabrication process and their optimization, and we evaluate the patterns printed from the surface-relief TIR hologram masks.