DOI QR코드

DOI QR Code

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT

방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학

  • Kim, Ju-Heon (Department of Radiology, Yeongju Red Cross Hospital) ;
  • Han, Sung-Mi (Optical Convergence Technology Center, Catholic University of Daegu) ;
  • Song, Hyun-Ouk (Department of Parasitology, Catholic University of Daegu School of Medicine) ;
  • Seo, Youn-Kyung (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University) ;
  • Moon, Young-Suk (Department of Anatomy, Catholic University of Daegu School of Medicine) ;
  • Kim, Hong-Tae (Department of Anatomy, Catholic University of Daegu School of Medicine)
  • 김주헌 (영주적십자병원 영상의학과) ;
  • 한성미 (대구가톨릭대학교 안광학융합사업단) ;
  • 송현욱 (대구가톨릭대학교 의과대학 기생충학교실) ;
  • 서윤경 (한양대학교 의과대학 해부세포생물학교실) ;
  • 문용석 (대구가톨릭대학교 의과대학 해부학교실) ;
  • 김홍태 (대구가톨릭대학교 의과대학 해부학교실)
  • Received : 2018.09.10
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

조직표본의 실제적인 3차원 구조에 대한 정보를 3차원 조직학이라고 하였다. 무른 성분들이 섞여 있고, 물을 포함 하고 있는 조직 내부의 미세구조의 3차원적 분석을 위해 방사광의 X선을 광원으로 하는 위상대조 미세단층 촬영이 활용되고 있다. 하지만, X선 위상대조영상 분석에서 물을 포함하고 있는 조직에서는 위상대조가 제대로 구현되지 않다는 것을 알게 되었다. 이러한 현상을 해결하기 위해 다양한 방법들을 적용하였으며, 표본을 얼렸을 때 위상대조가 강화된다는 사실을 확인하였다. 방사광 전파위상대조 동결미세단층촬영은 포항가속기연구소 X선 영상빔라인에서 수행하였다. 표본을 동결상태로 유지하면서 $0.18^{\circ}$ 간격으로 $180^{\circ}$ 회전하였으며, 표본을 통과한 X선에 의해 섬광기에 맺힌 영상을 광학렌즈로 확대하여 CCD카메라로 모았다. 각 표본 전체 투사영상을 OCTOPUS 소프트웨어로 재구성하여 2차원 단면영상으로 만들고, Amira 소프트웨어를 이용하여 3차원 영상으로 재구성하였으며, 단면영상에서 각 구조에 대한 구역화와 랜더링 작업을 수행하였다. 물에 의한 위상대조 방해 영향을 줄이기 위해 표본을 얼렸을 때 위상대조는 강화되었으나 동결팽창에 의한 조직변형이 관찰되었다. 표본을 막힌 공간에 넣고 주위를 포매제로 채워 급속냉동 동안 표본이 압박되도록 하였을 때 위상대조의 강화와 동결팽창에 의한 조직변형을 줄일 수 있었다. 결론적으로, 생체조직 내부 미세구조의 비파괴, 고해상도 3차원 영상분석에 있어 조직표본을 동결포매제로 포매 후 급속냉동하고, 방사광에서 방출되는 X선을 광원으로 하는 전파위상대조 동결미세단층촬영법은 효과적인 방법이 될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

Supported by : 대구가톨릭대학교 의과학연구소

References

  1. Park JS, Chung MS, Hwang SB, Lee YS, Har DH, Park HS. Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imaging. 2005; 24:352-60. https://doi.org/10.1109/TMI.2004.842454
  2. Hwang SB, Chung MS, Hwang YI, Park HS, Har DH, Shin DS, et al. Improved sectional images of the female pelvis showing detailed urogenital and neighboring structures. Korena J Phys Anthropol. 2010; 12:187-98.
  3. Fiala JC. Reconstruct: a free editor for serial section microscopy. J Microsc. 2005; 218:52-61. https://doi.org/10.1111/j.1365-2818.2005.01466.x
  4. Song WC, Hu KS, Kim HJ, Koh KS. A study of the secretion mechanism of the sebaceous gland using three-dimensional reconstruction to examine the morphological relationship between the sebaceous gland and arrector pili muscle in the follicular unit. Dermatol. 2007; 157:325-30. https://doi.org/10.1111/j.1365-2133.2007.08036.x
  5. Roy D, Steyer GJ, Gargesha M, Stone ME, Wilson DL. 3D cryo-imging: A very high-resolution view of the whole mouse. Ana Rec (Hoboken). 2009; 293:342-52.
  6. Le Gros M, McDermott G, Larabell CA. X-ray tomography of whole cells. Curr Opin Struct Biol. 2005; 15:593-600. https://doi.org/10.1016/j.sbi.2005.08.008
  7. Meuli R, Hwu Y, Je JH, Margaritondo G. Synchrotron radiation in radiology: radiology techniques based on synchrotron sources. Eur Radiol. 2004; 14:1550-60.
  8. Zhou SA, Brahme A. Development of phase-contrast X-ray imaging techniques and potential medical applications. Physica Medica. 2008; 24:129-48. https://doi.org/10.1016/j.ejmp.2008.05.006
  9. Momose A. Recent advances in X-ray phase imaging. Jap J Applied Physics. 2005; 44:6355-7. https://doi.org/10.1143/JJAP.44.6355
  10. Takeda T, Momose A, Wu J, Yu Q, Zeniya T, Lwin TT, et al. Vessel imaging by interferometric phase-contrast X-ray technique. Circulation. 2002; 105:1708-12. https://doi.org/10.1161/01.CIR.0000012752.35225.6C
  11. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW. Phase-contrast imaging using polychromatic hard X-rays. Nature. 1996; 384:335-8. https://doi.org/10.1038/384335a0
  12. Youn SW, Kim HK, KIm HT, Han SM, Don JK, DO YR, et al. Propagation-based phase-contrast X-ray microtomography of a cerebral protection device retrieved after carotid artery stenting. J Synchrotron Rad. 2014; 21:215-22. https://doi.org/10.1107/S1600577513023862
  13. Bravin A, Keyrilainen J, Fernandez M, Fiedler S, Nemoz C, Karjalainen-Lindsberg KL, et al. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tisssue samples and comparison with their histo-pathology. Phys Med Biol. 2007; 52:2197-211. https://doi.org/10.1088/0031-9155/52/8/011
  14. Sunaguchi N, Yuasa T, Huo Q, Ando M. Convolution reconstruction algorithm for refraction-contrast computed tomography using a Laue-case analyzer for drak field imging. Opt Lett. 2011; 36:391-3. https://doi.org/10.1364/OL.36.000391
  15. Pfeiffer F, Weitkamp T, Bunk O, David C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Physics. 2006; 2:258-61. https://doi.org/10.1038/nphys265
  16. Kim BI, Kim KH, Youn HS, Jheon S, Kim JK, Kim HT. High-resolution X-ray phase contrast synchrotron imaging of normal and ligation damaged rat sciatic nerves. Micros Res Tech. 2008; 71:443-7. https://doi.org/10.1002/jemt.20571
  17. Choi CH, Kim HT, Choe JY, Kim SK, Choi GW, Jheon SH, et al. In vivo high-resolution synchrotron radiation imaging of collagen-induced arthritis in a rodent model. J. Synchrotron Rad. 2010; 17:393-9. https://doi.org/10.1107/S0909049510009581
  18. Larabell CA, Le Gros MA. X-ray tomography generates 3-D reconstruction of the Yeast, Saccharomyces cerevisiae, at 60-nm resolution. Molecular Biology of the Cell. 2004; 15:957-62. https://doi.org/10.1091/mbc.e03-07-0522
  19. Fitzgerald R. Phase-sensitive X-ray imaging. Phys Today. 2000; 53:23-6.
  20. Berhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnwebar D, Jansen J, et al. Osteoconductive modification of Ti-implants in a goat defect model: characterization of bone growth with SR ${\mu}CT$ and histology. Biomaterials. 2005; 26:3009-19. https://doi.org/10.1016/j.biomaterials.2004.08.030
  21. Kim HT, Han SM, Moon YS, Seo SJ, Kim JK, Kim KH. Comparision of the 3D structures of Hairs from humans and from animals by using synchrotron radiation micro-CT. New Phys: Sae Mulli. 2012; 62:269-74. https://doi.org/10.3938/NPSM.62.269
  22. Wu J, Takeda T, Lwin TT, Momose A, Sunaguchi N, Fukami T, et al. Imaging renal structures by X-ray phase-contrast microtomography. Kidney International. 2009; 75:945-51. https://doi.org/10.1038/ki.2009.42
  23. Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol. 2013; 58:R1-R35. https://doi.org/10.1088/0031-9155/58/1/R1
  24. Tang L, Li G, Sun YS, Li J, Zhang XP. Synchrotron radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies. J Synchrotron Rad. 2012; 19:319-22. https://doi.org/10.1107/S090904951200310X
  25. Mizutani R, Takeuchi A, Hara T, Uesugi K, Suzuki Y. Computed tomography imaging of the neuronal structure of Drosophila brain. J Synchrotron Rad. 2007; 14:282-7. https://doi.org/10.1107/S0909049507009004
  26. Studer D, Humbel BM, Matthias C. Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol. 2008; 130:877-89. https://doi.org/10.1007/s00418-008-0500-1
  27. Kuzay TM, Kazmierczak M, Hs ie h BJ. X-ray beam/biomaterial thermal interaction in third-generation synchrotron sources. Acta scrystallogr D Biol Crystallogr. 2001; 59:69-81.
  28. McDermott G, Le Gros MA, Knoechel CG, Uchida M, Larabell CA. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends in Cell Biol. 2009; 19:587-95. https://doi.org/10.1016/j.tcb.2009.08.005
  29. Rosene AL, Roy NJ, Davis BJ. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem. 1986; 34:1301-15. https://doi.org/10.1177/34.10.3745909