• Title/Summary/Keyword: micro bonding

Search Result 341, Processing Time 0.028 seconds

Study on Joint of Micro Solder Bump for Application of Flexible Electronics (플렉시블 전자기기 응용을 위한 미세 솔더 범프 접합부에 관한 연구)

  • Ko, Yong-Ho;Kim, Min-Su;Kim, Taek-Soo;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.4-10
    • /
    • 2013
  • In electronic industry, the trend of future electronics will be flexible, bendable, wearable electronics. Until now, there is few study on bonding technology and reliability of bonding joint between chip with micro solder bump and flexible substrate. In this study, we investigated joint properties of Si chip with eutectic Sn-58Bi solder bump on Cu pillar bump bonded on flexible substrate finished with ENIG by flip chip process. After flip chip bonding, we observed microstructure of bump joint by SEM and then evaluated properties of bump joint by die shear test, thermal shock test, and bending test. After thermal shock test, we observed that crack initiated between $Cu_6Sn_5IMC$ and Sn-Bi solder and then propagated within Sn-Bi solder and/or interface between IMC and solder. On the other hands, We observed that fracture propated at interface between Ni3Sn4 IMC and solder and/or in solder matrix after bending test.

Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load (원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump (플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술)

  • Kim, Min-Su;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

MICRO-SHEAR BOND STRENGTH TO DENTIN UNDER SIMULATED PULPAL PRESSURE (치수압이 상아질 접착제의 미세전단 결합강도에 미치는 영향에 관한 In vitro 연구)

  • Song, Yun-Jung;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.339-345
    • /
    • 2004
  • The aim of this study was to measure and compare the micro shear bond strengths of the following dentin bonding systems to the dentin surfaces under simulated pulpal pressure: All Bond $2^{\circledR},{\;}Second^{\circledR},{\;}AdheSE^{\circledR}$, Adper Prompt $L-Pop^{\circledR}$. The occlusal surfaces of 180 extracted human molars were prepared so the dentin bonding surfaces could be exposed. The teeth were randomly assigned to 3 equal groups of 60 each and subdivided. The dentin surfaces were treated with the above mentioned bonding system and resin composite cylinders were built up under a simulated pulpal pressure when saline (Group II) or diluted bovine serum (Group III) was used as the pulpal fluid. As a control. the same procedures were performed in the dried dentin surfaces (Group I). After one day of storage in water. the micro shear bond strengths were measured using an EZ tester. Group II and III showed significantly lower shear bond strength than Group I statistically (p < 0.05). $SEbond^{\circledR}{\;}and{\;}AdheSE^{\circledR}$ showed no difference among the different dentin condition. In the Adper Prompt $L-Pop^{\circledR}$. a simulated pulpal pressure were applied to the specimens using diluted bovine serum. which showed a higher strength than the specimens in which saline was used (p < 0.05).

Thermoplastic Fusion Bonding of UV Modified PMMA Microfluidic Devices (UV 개질된 PMMA 미세유체 장치의 열가소성 폴리머 용융 접합)

  • Park, Taehyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.441-449
    • /
    • 2014
  • Thermoplastic fusion bonding is widely used to seal polymer microfluidic devices and optimal bonding protocol is required to obtain a successful bonding, strong bonding force without channel deformation. Besides, UV modification of the PMMA (poly-methyl methacrylate) is commonly used for chemical or biological application before the bonding process. However, study of thermal bonding for the UV modified PMMA was not reported yet. Unlike pristine PMMA, the optimal bonding parameters of the UV modified PMMA were $103^{\circ}C$, 71 kPa, and 35 minutes. A very low aspect ratio micro channel (AR=1:100, $20{\mu}m$ depth and $2000{\mu}m$ width) was successfully bonded (over 95%, n>100). Moreover, thermal bonding of multi stack PMMA chips was successfully demonstrated in this study. The results may applicable to fabricate a complex 3 dimensional microchannel networks.

Characterization of Fluxing and Hybrid Underfills with Micro-encapsulated Catalyst for Long Pot Life

  • Eom, Yong-Sung;Son, Ji-Hye;Jang, Keon-Soo;Lee, Hak-Sun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.343-351
    • /
    • 2014
  • For the fine-pitch application of flip-chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro-encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro-encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine-pitch flip-chip bonding processes and be highly reliable.

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

Design and Fabrication of Micro Combustor (III) - Fabrication of Micro Engine by Photosensitive Class - (미세 연소기 개발 (III) - 감광 유리를 이용한 마이크로 엔진의 제작 -)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Joon-Bo;Yoon, Eui-Sik;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1639-1645
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer form the engine. Combustor size was determined to be 1 mm scale. Movable piston is engraved inside the wafer. Ignition was done by nickel spark plug which was electroplated with thickness of 40 ${\mu}{\textrm}{m}$. The wafers were bonded by epoxy that resists high temperature. In firing test due to the bonding method and design tolerance pressure buildup by reaction was not confirmed. But ignition, flame propagation and actuation of micro structure from the reaction was observed. From the result basement of design and fabrication technology was obtained.

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.