• Title/Summary/Keyword: metric tensor

Search Result 105, Processing Time 0.017 seconds

ON THE SPECIAL FINSLER METRIC

  • Lee, Nan-Y
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.457-464
    • /
    • 2003
  • Given a Riemannian manifold (M, $\alpha$) with an almost Hermitian structure f and a non-vanishing covariant vector field b, consider the generalized Randers metric $L\;=\;{\alpha}+{\beta}$, where $\beta$ is a special singular Riemannian metric defined by b and f. This metric L is called an (a, b, f)-metric. We compute the inverse and the determinant of the fundamental tensor ($g_{ij}$) of an (a, b, f)-metric. Then we determine the maximal domain D of $TM{\backslash}O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined. And then we show that any (a, b, f)-manifold is quasi-C-reducible and find a condition under which an (a, b, f)-manifold is C-reducible.

Conformal transformations of difference tensors of Finsler space with an $(alpha,beta)$-metric

  • Lee, Yong-Duk
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.975-984
    • /
    • 1997
  • In the Finsler space with an $(\alpha, \beta)$-metric, we can consider the difference tensors of the Finsler connection. The properties of the conformal transformation of these difference tensors are investigated in the present paper. Some conformal invariant tensors are formed in the Finsler space with an $(\alpha, \beta)$-metric related with the difference tensors.

  • PDF

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Huchchappa, Aruna Kumara;Naik, Devaraja Mallesha;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1315-1328
    • /
    • 2019
  • The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.

SASAKIAN STATISTICAL MANIFOLDS WITH QSM-CONNECTION AND THEIR SUBMANIFOLDS

  • Sema Kazan
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.471-490
    • /
    • 2023
  • In this present paper, we study QSM-connection (quarter-symmetric metric connection) on Sasakian statistical manifolds. Firstly, we express the relation between the QSM-connection ${\tilde{\nabla}}$ and the torsion-free connection ∇ and obtain the relation between the curvature tensors ${\tilde{R}}$ of ${\tilde{\nabla}}$ and R of ∇. After then we obtain these relations for ${\tilde{\nabla}}$ and the dual connection ∇* of ∇. Also, we give the relations between the curvature tensor ${\tilde{R}}$ of QSM-connection ${\tilde{\nabla}}$ and the curvature tensors R and R* of the connections ∇ and ∇* on Sasakian statistical manifolds. We obtain the relations between the Ricci tensor of QSM-connection ${\tilde{\nabla}}$ and the Ricci tensors of the connections ∇ and ∇*. After these, we construct an example of a 3-dimensional Sasakian manifold admitting the QSM-connection in order to verify our results. Finally, we study the submanifolds with the induced connection with respect to QSM-connection of statistical manifolds.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS

  • ERKEN, I. KUPELI
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.457-468
    • /
    • 2015
  • The aim of present paper is to investigate 3-dimensional ${\xi}$-projectively flt and $\tilde{\varphi}$-projectively flt normal almost paracontact metric manifolds. As a first step, we proved that if the 3-dimensional normal almost paracontact metric manifold is ${\xi}$-projectively flt then ${\Delta}{\beta}=0$. If additionally ${\beta}$ is constant then the manifold is ${\beta}$-para-Sasakian. Later, we proved that a 3-dimensional normal almost paracontact metric manifold is $\tilde{\varphi}$-projectively flt if and only if it is an Einstein manifold for ${\alpha},{\beta}=const$. Finally, we constructed an example to illustrate the results obtained in previous sections.

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman;Salah Gomaa Elgendi
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.

MODULI OF SELF-DUAL METRICS ON COMPLEX HYPERBOLIC MANIFOLDS

  • Kim, Jaeman
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • On compact complex hyperbolic manifolds of complex dimension two, we show that the dimension of the space of infinitesimal deformations of self-dual conformal structures is smaller than that of the deformation obstruction space and that every self-dual metric with covariantly constant Ricci tensor must be a standard one upto rescalings and diffeomorphisms.

ξ-PARALLEL STRUCTURE JACOBI OPERATORS OF REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KIM, NAM-GIL;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.573-589
    • /
    • 2006
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ in a non flat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}$ is ${\xi}$-parallel and the Ricci tensor S commutes with the structure operator $\phi$, then a real hypersurface in $M_n(c)$ is a Hopf hypersurface. Further, we characterize such Hopf hypersurface in $M_n(c)$.

  • PDF