Browse > Article
http://dx.doi.org/10.5831/HMJ.2014.36.4.805

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES  

Cho, Jong Taek (Department of Mathematics, Chonnam National University)
Chun, Sun Hyang (Department of Mathematics, Chosun University)
Publication Information
Honam Mathematical Journal / v.36, no.4, 2014 , pp. 805-812 More about this Journal
Abstract
For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.
Keywords
unit tangent sphere bundle; contact metric structure; characteristic Jacobi operator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
2 D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and Topology, World Scientific, Singapore 509 (1989), 15-30.
3 E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
4 E. Boeckx, D. Perrone and L. Vanhecke, Unit tangent sphere bundles and twopoint homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95.   DOI
5 J. T. Cho and S. H. Chun, On the classi cation of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.
6 E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent bundles, Publ. Math. Debrecen 70 (2007), 167-178.
7 P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
8 A. Gray, Classification des varietes approximativement kahleriennes de courbure sectionelle holomorphe constante, J. Reine Angew. Math. 279 (1974), 797-800.
9 O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
10 P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320.   DOI
11 Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143.   DOI
12 L. Vanhecke and T. J. Willmore, Interactions of tubes and spheres, Math. Anal. 21 (1983), 31-42.
13 K. Yano and S. Ishihara, Tangent and cotangent bundles, M. Dekker Inc. 1973.