
Honam Mathematical J. 37 (2015), No. 4, pp. 457–468
http://dx.doi.org/10.5831/HMJ.2015.37.4.457

SOME CLASSES OF 3-DIMENSIONAL NORMAL

ALMOST PARACONTACT METRIC MANIFOLDS

I. Küpeli Erken

Abstract. The aim of present paper is to investigate 3-dimensional
ξ-projectively flat and ϕ̃-projectively flat normal almost paracon-
tact metric manifolds. As a first step, we proved that if the 3-
dimensional normal almost paracontact metric manifold is ξ-pro-
jectively flat then ∆β = 0. If additionally β is constant then the
manifold is β-para-Sasakian. Later, we proved that a 3-dimensional
normal almost paracontact metric manifold is ϕ̃-projectively flat if
and only if it is an Einstein manifold for α, β =const. Finally, we
constructed an example to illustrate the results obtained in previous
sections.

1. Introduction

Paracontact metric structures were introduced in [11], as a natural
odd-dimensional counterpart to paraHermitian structures, like contact
metric structures correspond to the Hermitian ones. Paracontact met-
ric manifolds (M2n+1, ϕ̃, ξ, η, g̃) have been studied by many authors in
the recent years, particularly since the appearance of [18]. The curva-
ture identities for different classes of almost paracontact metric mani-
folds were obtained e.g. in [8], [16], [18]. The importance of paracon-
tact geometry, and in particular of para-Sasakian geometry, has been
pointed out especially in the last years by several papers highlighting
the interplays with the theory of para-Kähler manifolds and its role
in pseudo-Riemannian geometry and mathematical physics (cf. e.g.
[1],[2],[5],[6],[7],[12]).

Z. Olszak studied normal almost contact metric manifolds of dimen-
sion 3 [14]. He derive certain necessary and sufficient conditions for
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458 I. Küpeli Erken

an almost contact metric structure on manifold to be normal and cur-
vature properties of such structures and normal almost contact metric
structures on a manifold of constant curvature are studied. Recently,
J. WeÃlyczko studied curvature and torsion of Frenet-Legendre curves
in 3-dimensional normal almost paracontact metric manifolds [15]. The
structures of some classes of 3-dimensional normal almost contact metric
manifolds were studied in [9]. C. L. Bejan and M. Crasmareanu con-
sidered second order parallel tensors and Ricci solitons in 3-dimensional
normal paracontact geometry [3].

In this study, we make the first contribution to investigate under
which conditions normal almost paracontact metric manifold of dimen-
sion 3 is ξ-projectively flat and ϕ̃-projectively flat.

The outline of the article goes as follows. In Section 2, we recall
basic facts which we will need throughout the paper. In Section 3, we
deal with some results related with 3-dimensional normal almost para-
contact manifolds. Section 4 is devoted to 3-dimensional ξ-projectively
flat normal almost paracontact manifolds. For such manifolds there are
defined two scalar invariants α, β. Our first main result is that if the 3-
dimensional normal almost paracontact metric manifold is ξ-projectively
flat then ∆β = 0, where ∆ denotes the Beltrami operator. If addition-
ally β is constant then the manifold is β-para-Sasakian. Section 5 is
devoted to 3-dimensional ϕ̃-projectively flat normal almost paracontact
metric manifolds. Our second main result is that a 3-dimensional nor-
mal almost paracontact metric manifold is ϕ̃-projectively flat if and only
if it is an Einstein manifold for α, β =const. Finally, we would like to
remark the construction of 3-dimensional normal almost paracontact
metric manifold example which yields our results.

2. Preliminaries

In this section we collect the formulas and results we need on para-
contact metric manifolds. All manifolds are assumed to be connected
and smooth. We may refer to [11], [18] and references therein for more
information about paracontact metric geometry.

An (2n+1)-dimensional smooth manifold M is said to have an almost
paracontact structure if it admits a (1, 1)-tensor field ϕ̃, a vector field ξ
and a 1-form η satisfying the following conditions:

(i) η(ξ) = 1, ϕ̃2 = I − η ⊗ ξ,
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(ii) the tensor field ϕ̃ induces an almost paracomplex structure on each
fibre of D = ker(η), i.e. the ±1-eigendistributions, D± = Dϕ̃(±1)
of ϕ̃ have equal dimension n.

From the definition it follows that ϕ̃ξ = 0, η ◦ ϕ̃ = 0 and the endo-
morphism ϕ̃ has rank 2n. We denote by [ϕ̃, ϕ̃] the Nijenhius torsion

[ϕ̃, ϕ̃](X,Y ) = ϕ̃2[X,Y ] + [ϕ̃X, ϕ̃Y ]− ϕ̃[ϕ̃X, Y ]− ϕ̃[X, ϕ̃Y ].

When the tensor field Nϕ̃ = [ϕ̃, ϕ̃] − 2dη ⊗ ξ vanishes identically the
almost paracontact manifold is said to be normal. If an almost paracon-
tact manifold admits a pseudo-Riemannian metric g̃ such that

(1) g̃(ϕ̃X, ϕ̃Y ) = −g̃(X,Y ) + η(X)η(Y ),

for all X,Y ∈ Γ(TM), then we say that (M, ϕ̃, ξ, η, g̃) is an almost
paracontact metric manifold. Notice that any such a pseudo-Riemannian
metric is necessarily of signature (n+ 1, n). For an almost paracontact
metric manifold, there always exists an orthogonal basis {X1, . . . , Xn, Y1,
. . . , Yn, ξ} such that g̃(Xi, Xj) = δij , g̃(Yi, Yj) = −δij , g̃(Xi, Yj) = 0,
g̃(ξ,Xi) = g(ξ, Yj) = 0, and Yi = ϕ̃Xi, for any i, j ∈ {1, . . . , n}. Such
basis is called a ϕ̃-basis.

We can now define the fundamental form of the almost paracontact
metric manifold by F (X,Y ) = g̃(X, ϕ̃Y ). If dη(X,Y ) = g̃(X, ϕ̃Y ), then
(M, ϕ̃, ξ, η, g̃) is said to be paracontact metric manifold. In a paracontact

metric manifold one defines a symmetric, trace-free operator h̃ = 1
2Lξϕ̃,

where Lξ, denotes the Lie derivative. It is known [18] that h̃ anti-

commutes with ϕ̃ and satisfies h̃ξ = 0, trh̃ =trh̃ϕ̃ = 0 and

(2) ∇̃ξ = −ϕ̃+ ϕ̃h̃,

where ∇̃ is the Levi-Civita connection of the pseudo-Riemannian mani-
fold (M, g̃).

Moreover h̃ = 0 if and only if ξ is Killing vector field. In this case
(M, ϕ̃, ξ, η, g̃) is said to be a K-paracontact manifold. A normal para-
contact metric manifold is called a para-Sasakian manifold. Also in this
context the para-Sasakian condition implies the K-paracontact condi-
tion and the converse holds only in dimension 3. We also recall that
any para-Sasakian manifold satisfies

(3) R̃(X,Y )ξ = −(η(Y )X − η(X)Y ).

Similarly as in the class of almost contact metric manifolds [4], a
normal almost paracontact metric manifold will be called para-Sasakian
if F = dη [10] and quasi-para-Sasakian if dF = 0. Obviously, the class of
para-Sasakian manifolds is contained in the class of quasi-para-Sasakian
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manifolds. The converse does not hold in general. A paracontact metric
manifold will be called paracosymplectic if dF = 0, dη = 0 [8], more
generally α-para-Kenmotsu if dF = 2αη ∧ F , dη = 0, α = const. 6= 0.

3. Normal almost paracontact metric manifolds

Proposition 3.1. [15] For a 3-dimensional almost paracontact metric
manifold M the following three conditions are mutually equivalent

(a) M is normal,
(b) there exist functions α, β on M such that

(4) (∇̃X ϕ̃)Y = β(g̃(X,Y )ξ − η(Y )X) + α(g̃(ϕ̃X, Y )ξ − η(Y )ϕ̃X),

(c) there exist functions α, β on M such that

(5) ∇̃Xξ = α(X − η(X)ξ) + βϕ̃X.

Corollary 3.2. For a normal almost paracontact metric structure
(ϕ̃, ξ, η, g̃) on M , we have ∇̃ξξ = 0 and dη = −βF . The functions α, β
realizing (4) as well as (5) are given by [15]

(6) 2α = Trace
{
X −→ ∇̃Xξ

}
, 2β = Trace

{
X −→ ϕ̃∇̃Xξ

}
.

Proposition 3.3. [15] For a 3-dimensional almost paracontact metric
manifold M , the following three conditions are mutually equivalent

(a) M is quasi-para-Sasakian,
(b)there exists a function β on M such that

(7) (∇̃X ϕ̃)Y = β(g̃(X,Y )ξ − η(Y )X),

(c)there exists a function β on M such that

(8) ∇̃Xξ = βϕ̃X.

A 3-dimensional normal almost paracontact metric manifold is
• paracosymplectic if α = β = 0 [8],
• quasi-para-Sasakian if and only if α = 0 and β 6= 0 [10], [15],
• β-para-Sasakian if and only if α = 0 and β 6= 0 and β is constant,

in particular, para-Sasakian if β = −1 [15], [18],
• α-para-Kenmotsu if α 6= 0 and α is constant and β = 0.
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Theorem 3.4. Let (M, ϕ̃, ξ, η, g) be a 3-dimensional normal almost
paracontact metric manifold. Then the following curvature identities
hold

R̃(X,Y )Z

= (2(ξ(α) + α2 + β2) +
1

2
τ)(g̃(Y, Z)X − g̃(X,Z)Y )

−(ξ(α) + 3(α2 + β2) +
1

2
τ)((g̃(Y, Z)η(X)ξ − g̃(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ) + (ϕ̃Z(β)− Z(α))(η(Y )X − η(X)Y )

+(ϕ̃Y (β)− Y (α))(η(Z)X − g̃(X,Z)ξ)(9)

− (ϕ̃X(β)−X(α)) (η(Z)Y − g̃(Y, Z)ξ)

+(ϕ̃gradβ + gradα)(η(Y )g̃(X,Z)− η(X)g̃(Y, Z)).

S̃(Y, Z) = −(ξ(α) + α2 + β2 +
1

2
τ)g̃(ϕ̃Y, ϕ̃Z)(10)

+η(Z) (ϕ̃Y (β)− Y (α))

+η(Y ) (ϕ̃Z(β)− Z(α))− 2(α2 + β2)η(Y )η(Z),

where R̃, S̃ and τ are resp. Riemannian curvature, Ricci tensor and
scalar curvature of M .

Proof. Differentiating (5) covariantly and using (4) we find

∇̃X∇̃Y ξ = α(∇̃XY − η(∇̃XY )ξ) + (α2 − β2)g̃(ϕ̃X, ϕ̃Y )ξ

+βϕ̃∇̃XY +X(α)ϕ̃2Y

+X(β)ϕ̃Y − (α2 + β2)η(Y )ϕ̃2X − 2αβη(Y )ϕ̃X.

Therefore, for the curvature transformation R̃XY = [∇̃X , ∇̃Y ] − ∇̃[X,Y ]

we obtain

R̃(X,Y )ξ = −{
Y (α) + (α2 + β2)η(Y )

}
ϕ̃2X

+
{
X(α) + (α2 + β2)η(X)

}
ϕ̃2Y

−{Y (β) + 2αβη(Y )} ϕ̃X + {X(β) + 2αβη(X)} ϕ̃Y.(11)

and

(12) S̃(Y, ξ) = −Y (α) + ϕ̃Y (β)− {
ξ(α) + 2(α2 + β2)

}
η(Y ),

where R̃ denotes the curvature tensor and S̃ is the Ricci tensor.
From (11), we obtain

R̃(ξ, Y, Z, ξ) = (ξ(α) + α2 + β2)g̃(ϕ̃Y, ϕ̃Z)− (ξ(β) + 2αβ)g̃(ϕ̃Y, Z),
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where R̃(X,Y, Z,W ) = g̃(R̃(X,Y )Z,W ). By Bianchi identity the last
equation follows that

R̃(ξ, Y, Z, ξ) = (ξ(α) + α2 + β2)g̃(ϕ̃Y, ϕ̃Z),(13)

ξ(β) + 2αβ = 0.(14)

Next, we recall that the curvature tensor of a 3-dimensional pseudo-
Riemannian manifold satisfies

R̃(X,Y, Z,W ) = g̃(X,W )S̃(Y,Z)− g̃(X,Z)S̃(Y,W )

+g̃(Y, Z)S̃(X,W )− g̃(Y,W )S̃(X,Z)

−1

2
τ {g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W )} ,(15)

where τ is the scalar curvature.
In order to compute (10) we will use (12), (13) and (15). Combining

(10) with (15), we obtain (9).

Theorem 3.5. Let (M, ϕ̃, ξ, η, g) be a 3-dimensional normal almost
paracontact metric manifold. Then

(i)dF = (divξ)η ∧ F,where divξ is the divergence of ξ defined by

divξ = trace
{
X → ∇̃Xξ

}
.

(ii)If M has constant curvature τ , and α, β are constants, then τ =
−6(α2 + β2).

Proof. From (5), one can easily get divξ = 2α. Taking a local ortho-
normal ϕ̃-basis {E0 = ξ, E1 = ϕ̃E2, E2 = ϕ̃E1} such that g̃(E0, E0) =
g̃(E1, E1) = 1 and g̃(E2, E2) = −1, we obtain

(16) (η ∧ F )(E0, E1, E2) = 1

and using F (X,Y ) = g̃(X, ϕ̃Y ), we get

dF (E0, E1, E2) = (∇̃E0F )(E1, E2) + (∇̃E2F )(E0, E1)

+(∇̃E1F )(E2, E0)

= g̃(E1, (∇̃E0ϕ̃)E2) + g̃(E0, (∇̃E2ϕ̃)E1)

+g̃(E2, (∇̃E1ϕ̃)E0).

Using the fact that (4) in the last relation we have

(17) dF (E0, E1, E2) = 2α.

Now, we want to note that dF = ση ∧ F for a certain function σ on M.
From (16) and (17), we conclude that σ = divξ = 2α which concludes
the proof of (i). The proof of (ii) is a direct consequence of (9) for
α =constant and β =constant.
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4. 3-dimensional ξ-projectively flat normal almost paracon-
tact metric manifolds

Let M be a n-dimensional Riemannian manifold. If there exist an
one-to-one correspondence between each coordinate neighborhood of M
and a domain in Euclidean space such that any geodesic of the Rie-
mannian manifold corresponds to a straight line in the Euclidean space,
then M is said to be locally projectively flat. For n ≥ 3, M is locally
projectively flat if and only if the well-known projective curvature tensor
P vanishes. Here P is defined by [13]

P (X,Y )Z = R(X,Y )Z − 1

n− 1
{S(Y, Z)X − S(X,Z)Y } ,

for X,Y, Z ∈ T (M), where R is the curvature tensor and S is the Ricci
tensor. In fact, M is projectively flat (namely, P = 0) if and only if the
manifold is of constant curvature ([17], pp. 84-85). Thus, the projective
curvature tensor is a measure of the failure of a Riemannian manifold
to be of constant curvature.

The definition of projectively flat can be adapted to the definition
given by [17] for 3-dimensional almost paracontact metric manifolds. M
will be called projectively flat if P vanishes in the following formula.

(18) P̃ (X,Y )Z = R̃(X,Y )Z − 1

2
{S̃(Y, Z)X − S̃(X,Z)Y }

for X,Y, Z ∈ T (M), where R̃ is the curvature tensor and S̃ is the Ricci
tensor. So one can define ξ-projectively flat almost paracontact mani-
folds analogous to the definition of ξ-conformally flat manifolds.

Definition 4.1. A normal almost paracontact metric manifold M
is called ξ-projectively flat if the condition P̃ (X,Y )ξ = 0 holds on M ,

where projective curvature tensor P̃ is defined by (18).

By ∆ we denote the Laplace-Beltrami operator of g̃

∆f = Trace{X 7→ ∇Xgradf}.

Theorem 4.2. If the 3-dimensional normal almost paracontact met-
ric manifold is ξ-projectively flat then ∆β = 0. If additionally β is
constant then the manifold is β-para-Sasakian.
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Proof. Setting Z = ξ in (18) and with the use of (11), (12), we obtain

P̃ (X,Y )ξ =
1

2
(X(α)Y − Y (α)X) + (Y (α)η(X)−X(α)η(Y )) ξ

+X(β)ϕ̃Y − Y (β)ϕ̃X + 2αβ(η(X)ϕ̃Y − η(Y )ϕ̃X)

+
1

2
(ϕ̃Y (β)X − ϕ̃X(β)Y + ξ(α)(η(Y )X − η(X)Y )) .(19)

From the assumption of the manifold, we have

1

2
(X(α)Y − Y (α)X) + (Y (α)η(X)−X(α)η(Y )) ξ

+X(β)ϕ̃Y − Y (β)ϕ̃X + 2αβ(η(X)ϕ̃Y − η(Y )ϕ̃X)

+
1

2
(ϕ̃Y (β)X − ϕ̃X(β)Y + ξ(α)(η(Y )X − η(X)Y )) = 0.(20)

Replacing Y by ξ, in the last equation and using (14), it follows that

(21) X(α) + ϕ̃X(β)− ξ(α)η(X) = 0.

Rewriting (21) in the form

X(α) + g̃(gradβ, ϕ̃X)− ξ(α)η(X) = 0

and taking the covariant derivative of the last equation according to Y ,
we have

∇̃Y X(α) + g̃(∇̃Y gradβ, ϕ̃X) + g̃(gradβ, (∇̃Y ϕ̃)X)

−Y (ξ(α))η(X)− ξ(α)(∇̃Y η)X = 0

Antisymmetrizing with respect to X, Y , we have

g̃(∇̃Y gradβ, ϕ̃X)− g̃(∇̃Xgradβ, ϕ̃Y )

+{(∇̃Y ϕ̃)X(β)− (∇̃X ϕ̃)Y (β)}
−Y (ξ(α))η(X) +X(ξ(α))η(Y ) + 2ξ(α)dη(X,Y ) = 0(22)

On the other hand, applying (4) and Corollary 3.2 to (22), (22) returns
to

g̃(∇̃Y gradβ, ϕ̃X)− g̃(∇̃Xgradβ, ϕ̃Y )

+ {2αg̃(ϕ̃Y,X)ξ − α(η(X)ϕ̃Y − η(Y )ϕ̃X)− β(η(X)Y − η(Y )X)}β
−{Y ξ(α)η(X)−Xξ(α)η(Y )} − 2βξ(α)F (X,Y ) = 0(23)

Taking into account {e1, e2, ξ} an orthonormal ϕ̃-basis where X = e2 =
ϕ̃e1, Y = e1 = ϕ̃e2, we obtain

(24) g̃(∇̃e1gradβ, e1)− g̃(∇̃e2gradβ, e2) = 2αξ(β) + 2βξ(α).
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After differentiating (14) covariantly, we can state

(25) g̃(∇̃ξgradβ, ξ) = −2αξ(β)− 2βξ(α).

From (24) and (25), a simple computation shows that ∆β = 0, where
∆ = divgrad. If additionally β is constant from (14), we obtain α = 0
which implies that M is a β-para-Sasakian manifold.

5. 3-dimensional ϕ̃-projectively flat normal almost paracon-
tact metric manifolds

The similar definition of projectively flat which was given in [9] can
be given for almost paracontact metric manifolds.

Definition 5.1. A 3-dimensional normal almost paracontact metric
manifold satisfying the condition

ϕ̃2P̃ (ϕ̃X, ϕ̃Y )ϕ̃Z = 0

is called ϕ̃-projectively flat.

Proposition 5.2. The scalar curvature τ of a 3-dimensional ϕ̃-pro-
jectively flat normal almost paracontact metric manifold is τ = −6(ξ(α)+
α2 + β2).

Proof. Assume that M is a 3-dimensional ϕ̃-projectively flat normal
almost paracontact metric manifold. Note that ϕ̃2P̃ (ϕ̃X, ϕ̃Y )ϕ̃Z = 0
holds if and only if

g̃(P̃ (ϕ̃X, ϕ̃Y )ϕ̃Z, ϕ̃W ) = 0,

for any X,Y, Z,W ∈ T (M). Using (18), ϕ̃-projectively flat condition
returns to

(26) g̃(R̃(ϕ̃X, ϕ̃Y )ϕ̃Z, ϕ̃W ) =
1

2

{
S̃(ϕ̃Y, ϕ̃Z)g̃(ϕ̃X, ϕ̃W )

−S̃(ϕ̃X, ϕ̃Z)g̃(ϕ̃Y, ϕ̃W )

}
.

We can suppose that {e1, e2, ξ} is a local orthonormal basis of vector
fields in M . By using the fact that {ϕ̃e1, ϕ̃e2, ξ} is also a local orthonor-
mal basis, if we put X = W = ei in (26) and sum up with respect to i,
we obtain

2∑

i=1

g̃(R̃(ϕ̃ei, ϕ̃Y )ϕ̃Z, ϕ̃ei)(27)

=
1

2

2∑

i=1

{
S̃(ϕ̃Y, ϕ̃Z)g̃(ϕ̃ei, ϕ̃ei)− S̃(ϕ̃ei, ϕ̃Z)g̃(ϕ̃Y, ϕ̃ei)

}
.
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Using (13) and (10) in (27), we get
(τ
2
+ 3(ξ(α) + α2 + β2)

)
(g̃(ϕ̃Y, ϕ̃Z)) = 0.

From the last equation we conclude that τ = −6(ξ(α) + α2 + β2).

Theorem 5.3. Let (M, ϕ̃, ξ, η, g) be a 3-dimensional normal almost
paracontact metric manifold, and α, β are constants. The manifold
is ϕ̃-projectively flat if and only if it is an Einstein manifold, and in
consequence of constant sectional curvature.

Proof. Let (M, ϕ̃, ξ, η, g) be a 3-dimensional ϕ̃-projectively flat nor-
mal almost paracontact metric manifold. From Proposition 5.2, we know
τ = −6(ξ(α) + α2 + β2). Hence, by (10), the manifold is an Einstein
manifold for α, β =const. Conversely, assume that (M, ϕ̃, ξ, η, g) is an
Einstein manifold for α, β =const. From (27), we get the manifold is ϕ̃-
projectively flat. Note that arbitrary 3-dimensional pseudo-Riemannian
Einstein manifold has constant sectional curvature.

6. Example

Now, we will give an example of a 3-dimensional normal almost para-
contact metric manifold.

Example 6.1. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3, z 6= 0}
and the vector fields

X =
∂

∂x
, ϕ̃X =

∂

∂y
, ξ = (x+ 2y)

∂

∂x
+ (2x+ y)

∂

∂y
+

∂

∂z
.

The 1-form η = dz defines an almost paracontact structure on M with
characteristic vector field ξ = (x+2y) ∂

∂x + (2x+ y) ∂
∂y +

∂
∂z . Let g̃, ϕ̃ be

the pseudo-Riemannian metric and the (1, 1)-tensor field given by

g̃ =




1 0 −1
2(x+ 2y)

0 −1 1
2(2x+ y)

−1
2(x+ 2y) 1

2(2x+ y) 1− (2x+ y)2 + (x+ 2y)2


 ,

ϕ̃ =




0 1 −(2x+ y)
1 0 −(x+ 2y)
0 0 0


 ,

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z .
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Using (5) we have

∇̃XX = −ξ, ∇̃ϕ̃XX = 0, ∇̃ξX = −2ϕ̃X,

∇̃X ϕ̃X = 0, ∇̃ϕ̃X ϕ̃X = ξ, ∇̃ξϕ̃X = −2X,

∇̃Xξ = X, ∇̃ϕ̃Xξ = ϕ̃X, ∇̃ξξ = 0.

for α = 1 and β = 0. Hence the manifold is a para-Kenmotsu manifold.
One can easily compute,

(28)
R̃(X, ϕ̃X)ξ = 0, R̃(ϕ̃X, ξ)ξ = −ϕ̃X, R̃(X, ξ)ξ = −X,

R̃(X, ϕ̃X)ϕ̃X = X, R̃(ϕ̃X, ξ)ϕ̃X = −ξ, R̃(X, ξ)ϕ̃X = 0,

R̃(X, ϕ̃X)X = ϕ̃X, R̃(ϕ̃X, ξ)X = 0, R̃(X, ξ)X = ξ.

We have constant scalar curvature as follows,

τ = S(X,X)− S(ϕ̃X, ϕ̃X) + S(ξ, ξ) = −6.

From (10), we conclude that M is an Einstein manifold. Moreover, M
is ϕ̃-projectively flat for α = 1, β = 0 (τ = −6 = −6(α2 + β2)).

Acknowledgement: The author is grateful to the referee for his/her
valuable comments and suggestions.
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