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MODULI OF SELF-DUAL METRICS ON
COMPLEX HYPERBOLIC MANIFOLDS

JAEMAN KM

ABSTRACT. On compact complex hyperbolic manifolds of complex
dimension two, we show that the dimension of the space of infinites-
imal deformations of self-dual conformal structures is smaller than
that of the deformation obstruction space and that every self-dual
metric with covariantly constant Ricci tensor must be a standard
one upto rescalings and diffeomorphisms.

1. Introduction

Let (M, g) be an oriented Riemannian four-manifold. The bundle of
2-forms over M splits as the Whitney sum /\2 M=A"+A", /\i being
the cigenspace bundle of the Hodge star operator * € End /\2 M. The
Weyl tensor W € End A*M leaves AT invariant, and the restriction
W% of W to AT may be viewed as a (0,4) tensor, operating trivially
on AT [3]. We say (M,g) is self-dual or anti-self-dual if W~ = 0 or
W+ = 0. This is a property of the underlying conformal structure. As
explained in [1], the self-dual equation, W~ = 0, is the integrability con-
dition of a natural complex structure on the unit sphere bundle in A™.
This gives rise to the Penrose correspondence between self-dual confor-
mal structures on four-manifolds and certain complex three-manifolds
called twistor spaces. Not every manifold allows a self-dual metric. For
instance §2 x §2 does not allow any self-dual metric, since this manifold
has signature zero, which would force any putative self-dual metric to
be conformally flat-whereas the only simply connected conformally flat
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manifold is S* [8]. A conformally flat four-manifold is both self-dual
and anti-self-dual. Examples of conformally flat four-manifolds which
are well known are manifolds of constant curvature and a product four-
manifold 3; x CP! with metrics of opposite constant curvatures. Here
Y denotes a genus k(> 2) compact Riemann surface. From now on
the moduli of self-dual metrics (resp., conformally flat metrics) on M
means the set of all self-dual metrics (resp., conformally flat metrics)
on M modulo the action of the conformal transformation group of M.
For 84 the moduli of conformally flat metrics consists of a single point,
the standard conformally flat structure [7]. In fact cach conformally flat
structure has by making use of the developing map a holonomy corre-
spondence 71 (M) — S0(5,1), the conformal group of S* with the
standard metric, so that the moduli of conformally flat structures is
mapped into the representation space R(m (M); SO(5,1)), the space of
conjugacy classes of representations w1 (M) — SO(5,1). For a com-
pact real hyperbolic four-manifold, (Mg, hg), Johnson and Milson have
shown that the moduli of conformally fat structures can be arbitrarily
large [6]. Although the metric does not deform as a hyperbolic metric
by Mostow rigidity, the conformally Hat structure can be deformed by
bending along totally geodesic hypersurfaces.

The local structure of moduli space of self-dual metrics is controlled
by an elliptic deformation complex. The zeros of the Kuranishi map
then give charts for the moduli space. If there are no conformal isome-
tries and no obstructions to deformation, the moduli space is a smooth
manifold of dimension §(15x — 297), where x is the Euler number and 7
is the signature [7]. In Section 2 we show that on a compact complex hy-
perbolic manifold of complex dimension two, (M¢, h¢), the dimension
of the space of infinitesimal deformations of self-dual conformal struc-
tures at ho is smaller than that of the deformation obstruction space
at ho. In Section 3 we review briefly the fundamental properties of the
Weyl tensor W. In Section 4 we show that on M any self-dual metric
with covariantly constant Ricci tensor is a standard complex hyperbolic
metric, heo, upto rescalings and diffeomorphisms.

2. An inequality between dim Hj  and dim H7

Consider a compact oriented smooth four-manifold M. A smooth
Riemannian metric g on M is a smooth section of the bundle S?T*M
of symmetric 2-tensors which is positive definite everywhere. The space
£ of all Riemannian metrics on M is a convex open coune in T'(S*T*M).
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Thus the tangent space T,& is canonically identified with [(S?°T*M).
The group D of orientation-preserving diffeomorphisms of M is an
infinite-dimensional Lie group acting on £ by pullback. We now take
the quotient of the space of metrics by a larger group, called a confor-
mal transformation group. As a manifold, this conformal transformation
group is F = D x C, where the second factor is the space of positive
smooth functions on M. F acts smoothly on £ on the right:

Fx&—=E,

The stabilizer C} of g is called the conformal isometry group of g.
The curvature tensor R of a Riemannian metric, considered as an
endomorphism of the bundle of 2-forms, has the following block decom-
position with respect to the orthogonal splitting /\2 = /\+ + A~ induced
by the Hodge *-operator [2]:
+ /\—
: : +
R ( W+t_|'_ 2Id | ric, ) /\_
ric, | W™+ &1d A

where s is the scalar curvature, ric, is the traceless Ricei tensor, W+
is the self-dual Weyl tensor, and W~ is the anti-self-dual Weyl tensor.
We are interested in the solution space to the self-dual equation for the
Weyl tensor, W =W+ + W~

(2.1) W™ =0 W =W

A metric or conformal structure satisfying (2.1) is called self-dual.
This is invariant under the action of F, so we will consider the solution
space as a subvariety of % The Chern-Weil formula shows that W~ =0
implies 7(M) = 0, with equality if and only if W = 0, i.e. the metric
is conformally flat. Note that a change of orientation interchanges W~
and W=. Consider a fixed self-dual metric g on a compact oriented
four-manifold M of nonnegative signature. We want to describe all
nearby solutions of the self-dual equation. Infinitesimally, they give
rise to tensors in the kernel of the linearized operator T, W™ : Ty& —
T'(S2 A7). This kernel certainly contains the tangent space to the family
F of self-dual metrics, but these are the uninteresting deformations.
The interesting infinitesimal deformations are represented by the first
cohomology of the complex [7]:

(2.2) T(TM) & T(R) = T(S*T* M) % T(SEN ).
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We have written R for the trivial R-bundle over M, so that I'(R) is
the space of functions I'(M, R). In this complex I'(S?T*M) stands for
T,€. This complex has the following cohomology groups; H g = kert*,
Hy =ker(t & T,W™), H2 = cokerT,W~, where HY, H} and H} are the
space of conformal Killing vector fields for g, the space of infinitesimal
deformations of self-dual conformal structures at g and the space of
obstruction for local deformations at g, respectively. Furthermore, the
complex (2.2) is elliptic, with indices equal to

1
2
where x and 7 are the Fuler characteristic of M and signature of M,

respectively [7]. In order to show the main result in this section, we shall
need the following fact [4]:

(2.3) (15x(M) — 297(M)) = dim H{ — dim H, -+ dim H,

LEMMA 2.1. There are no non-trivial global 1-parameter groups of
conformal transformations on a compact oriented Riemannian manifold
M of dimension n > 2 with negative definite Ricci tensor 7.

Proof. Let X be the infinitesimal conformal transformation induced
by a given l-parameter group of conformal transformations of M and
£ the 1-form defined by X by duality. By the Ricci identity and the
conformal killing vector field condition, we obtain

(2.4) A&+ (1~ %)dag—ng =0,

where d, A and @ is the co-differential operator, the Laplace-Beltrami
operator d§ +Jd and the operator on 1-forms defined by (Qao); = rla;,
respectively. Taking the inner product with & and integrating, this tells
us that

ey o= (ldflz +2(1—%)l55|2*262(5,£)) v,

Since @ is negative definite, it follows that & = 0, that is X vanishes.
This completes the proof. O

Now we show the main result in this section:

THEOREM 2.2. On a compact complex hyperbolic manifold (M¢, h¢)
of complex dimension two,

dim Hj,, < dim Hj,,
holds.
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Proof. The given manifold has the following topological properties
[9]:
(2.6) T(Mc) > 0,x(Mc) = 3r(Mc).

On the other hand, we have dim ch =0 by Lemma 2.1. Consequently,
by (2.3), dim Hy_ < dim Hj , holds and this completes the proof. O

3. Basic facts

In this section we review briefly the fundamental properties of the
Weyl tensor W. In an oriented four-dimensional Riemannian manifold
(M, g), the endomorphisms W and * of /\2(M ) commute and conse-
quently, W leaves the subbundles /\lL invariant. The restrictions W= of
W to A\™ satisfy the relation [3]:

(3.7) TraceW= = 0.

Furthermore, the second Bianchi identity implies the following well
known divergence formula [3]: In local coordinates,

(3-8) VWori; = ViPrs — V5P,
where

1 1
(3.9) P= -2-(7‘ — gsg).

Suppose now that M is a compact oriented four-dimensional manifold.
The following formula

(3.10) g_ﬁ/M (W [2dV

defines a conformally invariant functional in the space of all Riemannian
metrics on M. It is known that the critical points of (3.10) are charac-
terized as follows [3]: A metric g on a compact oriented four-manifold
M is a critical point of (3.10) if and only if its Bach tensor B, given by
the local coordinate formula

1
(3.11) Bij = 77 7P Wpijq + §7°qupijq

vanishes identically. For x € M, we can choose an oriented orthogonal
basis w, 7, § with length /2 (resp., w™, 77, 6~ with length v/2) of AT
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(resp., AL ), consisting of eigenvectors of W such that we have, at z, a
relation of the form

1
(312) W = 5(/\w®w+w7®?7-l-1/0®9)
1
+§(,\_w_ Q™ +un ®n +r 07 R67),
where A\, p and v (resp., A™,u~ and v~) are the eigenvalues of W
(resp., W ). Thus (3.7) implies
(3.13) Adp+v=0, \+p"+v” =0.

Since AT are invariant under parallel displacements, in a neighbourhood
of any z € M we have

(3.14) Tw=¢c®@n—>b®86,
Vn=-cQw+a®0,
Vi=btQuw—a®n
for some 1 forms a, b, ¢ defined near z (Clearly, similar formulae hold
for Yw=,vn~,v87). WT satisfies the condition W™ =0, i.e., the
vanishing of its divergence if and only if relations
dx = (A= p)fc+ (A —v)nd,
(3.15) dp = (p—Nbc+ (p - v)wa,
dv =w-A)nb+ (v — pwa

hold {3]. Consequently, for any oriented Riemannian four-manifold such
that §WT = 0, we have the following expression for AX = §dX [3]:

(3.16) AX =207 + dpy — %s)\ +2(v — N)]5)% +2(u — M|

4. A rigidity theorem

In this section we shall prove that on a compact four-manifold that
does not admit a conformally flat metric, any self-dual metric with co-
variantly constant Ricei tensor must be Einstein. Consequently, on Me,
we show that any self-dual metric with covariantly constant Ricci tensor
is a standard hyperbolic metric, heo, upto rescalings and diffeomorphism.
Here a smooth Riemannian metric g is said to be Einstein if its Ricci
tensor r is a constant multiple of the metric g. For any compact ori-
ented Riemannian four-manifold (M, g), the signature 7(M) of M can
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be expressed as follows:
(417) 12WZT(M):/ (IWH? — W P2) dug/ W [2do,
M M

equality holds if and only if (M, g) is self-dual [1]. Thus, every self-dual
metric over M provides an absolute minimum for the functional (3.10).
Consequently, the Bach tensor of any compact self-dual Riemannian
four-manifold vanishes identically. The following Lemma is the crucial
ingredient to prove the main result in this section.

LemMA 4.1. On a compact four-manifold that does not admit a con-
formally flat metric, any self-dual metric with covariantly constant Ricci
tensor must be Einstein.

Proof. The above conditions together with (3.8), (3.9) and (3.11)
yield rPaWp;;. = 0 which implies that thc symmetric tensor 7' = Awrw
+pnrn +vfrd vanishes identically. If 7 — £g does not vanish identically,
then it is non-zero at all points of some connected open subset U of M.
Fix x € U and find Y € T, M¢ which is not an eigenvector of r,,. Since ¥’
is orthogonal to wY', nY", and Y, rY" is not orthogonal to one of them; for
instance, r(Y,wY’) 3£ 0. Relation T = 0 gives, for any tangent vector Z,
0=g(Z,TwZ) = M(Z,wZ) +(p—v)r(nZ,0Z). Substituting here Z =
Y and Z = nY, we obtain, respectively, Ar(Y,wY) + (u—v)r(nY,0Y) =
0 and (p — v)r(Y,wY) + Ar(nY,0Y) = 0. Since r(Y,wY) # 0, this
linear system must satisfy the determinant relation 0 = 2% — (u — v/)?
= (A—p+v)A+p—v), e, by A+p+v =0, ur = 0. Therefore detW
= \uv = 0 everywhere in U. Suppose now that W = W £ 0 at all
points of some connected open subset Uy of U. Taking Uy sufficiently
small, we may assume, without loss of generality, that A = 0 and, by
A+ p+v=0,v=—p#0everywhere in Uy. In Uy, (3.15) and dA =0
yield |b] = [¢|, and (3.16) implies 0 = AX = 4uv. This contradiction
shows that W = 0 in U. However the covariantly constant Ricci tensor
implies either that r — 7¢ vanishes identically or that r — £g is non-
vanishing, so non-conformally flat condition forces our given metric to
be Einstein. This completes the proof. U

We shall now prove the following:

TrHeEOREM 4.2. On Mc, any self-dual metric, g,, with covariantly
constant Ricci tensor is a standard complex hyperbolic metric, h¢, upto
rescalings and diffeomorphisms.

Proof. According to Lemma 4.1, g, is Einstein. On the other hand, by
Seiberg-Witten theory, the Einstein metric g, on M¢ must be kahler [11]
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and hence (Mc, g,) is locally symmetric [9]. From these facts it follows
that (Mc, go) is & compact complex hyperbolic manifold (Mg, ko) upto
diffeomorphisms and rescalings by Mostow rigidity. This completes the
proof. [
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