ON THE SPECIAL FINSLER METRIC

NANY LEE

ABSTRACT. Given a Riemannian manifold (M,α) with an almost Hermitian structure f and a non-vanishing covariant vector field b, consider the generalized Randers metric $L=\alpha+\beta$, where β is a special singular Riemannian metric defined by b and f. This metric L is called an (a,b,f)-metric. We compute the inverse and the determinant of the fundamental tensor (g_{ij}) of an (a,b,f)-metric. Then we determine the maximal domain $\mathcal D$ of $TM\setminus O$ for an (a,b,f)-manifold where a y-local Finsler structure L is defined. And then we show that any (a,b,f)-manifold is quasi-C-reducible and find a condition under which an (a,b,f)-manifold is C-reducible.

1. Introduction

Let M be a smooth 2m-dimensional manifold. We will consider a Finsler metric $L=\alpha+\beta$, where α is a Riemannian metric on M and β is a singular Riemannian metric on M. We call such a Finsler metric a generalized Randers metric. In case where β is a 1-form on M, L is a usual Randers metric.

We denote a point of M by $x = (x^i)$ and a tangent vector at that point x by $y = (y^i)$. Let $\alpha(x,y) = (a_{ij}(x)y^iy^j)^{1/2}$ be a Riemannian metric on M. Given an almost Hermitian structure $f_j^i(x)$ of (M,α) and a non-vanishing covariant vector field $b_i(x)$ on M, we have a singular Riemannian metric $\beta(x,y) = (b_{ij}(x)y^iy^j)^{1/2}$, where $b_{ij} = b_ib_j + f_if_j$ and $f_i = b_rf_i^r$. Such $L = \alpha + \beta$ is an interesting example of a generalized Randers metric, which we call an (a,b,f)-metric. For the further study about (a,b,f)-metrics, we refer to [3] and [4].

Received November 6, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53B40; Secondary 53C60, 58B20.

Key words and phrases: Finsler metric, generalized Randers metric, (a,b,f)-metric, Rizza manifold, C-reducible.

Partially supported by the University of Seoul, 2000.

Note that a manifold with an (a, b, f)-metric becomes a Rizza manifold. A Rizza manifold (M, L, f) is by definition a Finsler manifold (M, L) with an almost complex structure $f_i^i(x)$ satisfying the condition

$$L(x, \phi_{\theta}(y)) = L(x, y),$$

where $\phi_{\theta_j}^i = \cos \theta \cdot \delta_j^i + \sin \theta \cdot f_j^i$. But an (a, b, f)-metric is not a y-global Finsler metric. And so we have to restrict a domain in the tangent bundle T(M) over M, say, $\{y : \beta(y) \neq 0\}$. In section 4, we show that the $n \times n$ Hessian matrix $(g_{ij}) := ((\frac{1}{2}L^2)_{y_iy_j})$ is positive definite on $\{y : \beta(y) \neq 0\}$ by checking the sign of determinant of (g_{ij}) . For this purpose, we compute the determinant of (g_{ij}) .

It is interesting and valuable to study Finsler space with some important tensors of special form. For example, M. Matsumoto[6] initiated the study of a Finsler metric whose Cartan tensor $A_{ijk} := \frac{L}{4}(L^2)_{y^i y^j y^k}$ satisfies

$$A_{ijk} = \mathfrak{S}_{(ijk)} \{ Q_{ij} R_k \} \,,$$

where Q_{ij} is a symmetric Finsler tensor field satisfying $Q_{ij}y^j = 0$ and R_k is assumed to satisfy $R_ky^k = 0$. Here we use the notation $\mathfrak{S}_{(ijk)}$ to denote the summation of the cyclic permutation of indices i, j, k, i.e.,

$$\mathfrak{S}_{(ijk)}\{S_{ijk}\} = S_{ijk} + S_{jki} + S_{kij}.$$

In case $R_k = A_k$ with $A_k := g^{ij}A_{ijk}$, the Finsler manifold is called quasi-C-reducible. Furthermore, if $Q_{ij} = \frac{1}{n+1}h_{ij}$ where h_{ij} is the angular metric $h_{ij} := g_{ij} - L_i L_j$, we call the Finsler manifold to be C-reducible. In section 4, we show that any (a,b,f)-manifold is quasi-C-reducible and find a sufficient condition that an (a,b,f)-manifold is C-reducible. To get A_k , we compute the inverse (g^{ij}) of (g_{ij}) .

2. Preliminaries

Let (M, α) be a 2m-dimensional Riemannian manifold and let $f_j^i(x)$ be an almost Hermitian structure of (M, α) . For a non-vanishing covariant vector field $b_i(x)$ on M, we have a singular Riemannian metric

$$\beta(x,y) = (b_{ij}(x)y^iy^j)^{1/2},$$

where $b_{ij} = b_i b_j + f_i f_j$, $f_i = b_r f_i^r$ and we consider a generalized Randers metric $L = \alpha + \beta$. Such a generalized Randers metric $L = \alpha + \beta$ is called an (a, b, f)-metric and (M, L) an (a, b, f)-manifold.

Recall the definition of a y-global Finsler metric F on M.

DEFINITION 2.1. A y-global Finsler metric on M is a function $F:TM\to\mathbb{R}$ such that

- (F1) Nonnegativity: $F \geq 0$ on TM.
- (F2) Regularity: F is smooth on $TM \setminus O$.
- (F3) Absolute homogeneity: $F(x, \lambda y) = |\lambda| F(x, y)$ for all $\lambda \in \mathbb{R}$.
- (F4) Strong convexity: The $n \times n$ Hessian matrix $(g_{ij}) := ((\frac{1}{2}F^2)_{y_iy_j})$ is positive definite at every point of $TM \setminus O$.

Note that for the most important physical applications, the assumptions are too restrictive. And so we have to consider a y-local Finsler structure F defined only on a domain \mathcal{D} of $TM \setminus O$ with $\mathcal{D} \cap T_xM \neq \emptyset$ for every $x \in M$.

Now we find the maximal domain \mathcal{D} of $TM \setminus O$ for (a, b, f)-metric. Because $L(y) = \alpha(y) + \beta(y)$ is positive for any $y \in TM \setminus O$ and both α and β are regular away from $\{y : \beta(y) = 0\} = \ker B$ with $B = (b_{ij})$, our possible domain \mathcal{D} is the complement $\mathbb{C}(\ker B)$ of $\ker B$. In section 4, we show that (g_{ij}) is positive definite on $\mathbb{C}(\ker B)$, i.e., all the eigenvalues of (g_{ij}) are positive on $\mathbb{C}(\ker B)$.

We use the following lemma extensively in the next section. For its proof, see [1].

LEMMA 2.1. Let (P_{ij}) be a real symmetric non-singular matrix with the inverse (P^{ij}) . And let $(Q_{ij}) = (P_{ij} \pm c_i c_j)$ with $1 \pm c^2 \neq 0$ and $c^2 := c_i P^{ij} c_j$. Then the matrix (Q_{ij}) is non-singular and its inverse is $(Q^{ij}) = (P^{ij} \mp \frac{1}{1 \pm c^2} c^i c^j)$ where $c^i = P^{ij} c_j$ and $\det(Q_{ij}) = (1 \pm c^2) \det(P_{ij})$.

3. The computation of the determinant and the inverse of (g_{ij})

In this section, we compute the inverse and the determinant of the fundamental tensor (g_{ij}) of (a,b,f)-metric. Here we assume that $y\in \mathbb{C}\ker B$.

For $L = \alpha + \beta$, we have

$$g_{ij} = rac{L}{lpha} a_{ij} + rac{L}{eta} b_i b_j + rac{L}{eta} f_i f_j + L_i L_j - rac{L}{lpha} lpha_i lpha_j - rac{L}{eta} eta_i eta_j \, ,$$

where $\alpha_i = \frac{\partial \alpha}{\partial y^i}$, $\beta_i = \frac{\partial \beta}{\partial y^i}$, $L_i = \alpha_i + \beta_i$. We put $\alpha^i = a^{ir}\alpha_r$, $\beta^i = a^{ir}\beta_r$, $b^i = a^{ij}b_j$ and $f^i = a^{ij}f_j$. Then we can apply Lemma 2.1 to (g_{ij}) five times.

460 Nany Lee

PROPOSITION 3.1. For the fundamental tensor (g_{ij}) of an (a, b, f)-metric $L = \alpha + \beta$, the determinant of (g_{ij}) is

$$\det(g_{ij}) = \frac{L\gamma}{\alpha\beta} \det A$$

and the inverse (g^{ij}) of (g_{ij}) is given by

$$(3.1) \quad g^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij} + \frac{\alpha^2 \gamma}{L^3} \alpha^i \alpha^j - \frac{\alpha}{L^2 \beta} (\alpha^i \beta^j + \alpha^j \beta^i) + \frac{\alpha^2}{L \gamma} \beta^i \beta^j,$$

where $A = (\frac{L}{\alpha}a_{ij}), \ \gamma = \beta + b^2\alpha, \ b^{ij} = b^ib^j + f^if^j$.

Proof. First, we set

$$P_{ij} = \frac{L}{\alpha} a_{ij}, \ c_{1i} = \sqrt{\frac{L}{\beta}} b_i \text{ and } (Q_1)_{ij} = \frac{L}{\alpha} a_{ij} + \frac{L}{\beta} b_i b_j.$$

Note that $c_1^2=c_{1i}P^{ij}c_{1j}=\frac{\alpha}{\beta}b^2$, where $b^2=a^{ij}b_ib_j$ and (a^{ij}) is the inverse of (a_{ij}) . And note also that $b^2=a^{ij}b_ib_j$ is positive, because (a_{ij}) is positive definite. In particular, the quantity $1+c_1^2=\frac{\gamma}{\beta}>0$, where $\gamma=\beta+b^2\alpha>0$. By Lemma 2.1, we have

$$\det Q_1 = \frac{\gamma}{\beta} \det \left(\frac{L}{\alpha} a_{ij}\right) = \frac{\gamma}{\beta} \det A,$$
$$(Q_1)^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^i b^j.$$

Secondly, let

$$(Q_2)_{ij} = (Q_1)_{ij} + \frac{L}{\beta} f_i f_j, \ c_{2i} = \sqrt{\frac{L}{\beta}} f_i$$

and apply Lemma 2.1 in the same way. Then we have $c_2^2 = c_{2i}(Q_1)^{ij}c_{2j} = \frac{\alpha}{\beta}b^2$, $1 + c_2^2 = \frac{\gamma}{\beta} > 0$. And Lemma 2.1 says that

$$\det Q_2 = \frac{\gamma}{\beta} \det Q_1 = \frac{\gamma^2}{\beta^2} \det A,$$
$$(Q_2)^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij}.$$

Thirdly, let

$$(Q_3)_{ij} = (Q_2)_{ij} + L_i L_j, \ c_{3i} = L_i.$$

Then we have $c_3^2 = c_{3i}(Q_2)^{ij}c_{3j} = 1$, $1 + c_3^2 = 2$. And by Lemma 2.1,

$$\det Q_3 = \frac{2\gamma^2}{\beta^2} \det A,$$

$$(Q_3)^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij} - \frac{1}{2L^2} y^i y^j.$$

Fourthly, let

$$(Q_4)_{ij} = (Q_3)_{ij} - \frac{L}{\beta}\beta_i\beta_j, \ c_{4i} = \sqrt{\frac{L}{\beta}}\beta_i.$$

Then we have $c_4^2 = c_{4i}(Q_3)^{ij}c_{4j} = \frac{1}{\beta} \left(b^2 \alpha - \frac{b^4 \alpha^2}{\gamma} - \frac{\beta^2}{2L} \right), 1 - c_4^2 = \frac{\beta(2L + \gamma)}{2L\gamma} > 0$. And by Lemma 2.1,

$$\begin{split} \det Q_4 &= \frac{(2L+\gamma)\gamma}{L\beta} \det A\,, \\ (Q_4)^{ij} &= \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij} - \frac{1}{L(2L+\gamma)} y^i y^j \\ &- \frac{\alpha}{L(2L+\gamma)\beta} (a^{ik} b_{kl} y^l y^j + y^i y^k b_{kl} a^{lj}) \\ &+ \frac{2\alpha^2}{(2L+\gamma)\beta^2 \gamma} a^{ik} b_{kl} y^l y^m b_{mn} a^{nj}. \end{split}$$

Finally, let

$$g_{ij} = (Q_4)_{ij} - \frac{L}{\alpha} \alpha_i \alpha_j, \ c_{5i} = \sqrt{\frac{L}{\alpha}} \alpha_i.$$

Then we get $c_5^2 = c_{5i}(Q_4)^{ij}c_{5j} = \frac{L+\gamma}{2L+\gamma} - \frac{L\beta}{\alpha(2L+\gamma)}, 1 - c_5^2 = \frac{L^2}{\alpha(2L+\gamma)} > 0.$ And by Lemma 2.1,

$$\det(g_{ij}) = \frac{L^2}{\alpha(2L+\gamma)} \cdot \frac{(2L+\gamma)\gamma}{L\beta} \det A = \frac{L\gamma}{\alpha\beta} \det A,$$

$$g^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij} + \frac{\gamma}{L^3} y^i y^j$$

$$- \frac{\alpha}{L^2\beta} (a^{ik} b_{kl} y^l y^j + y^i y^k b_{kl} a^{lj}) + \frac{\alpha^2}{L\beta^2 \gamma} a^{ik} b_{kl} y^l y^m b_{mn} a^{nj}.$$

If we set $\alpha^i = \frac{y^i}{\alpha}$ and $\beta^i = \frac{a^{ir}b_{rs}y^s}{\beta}$, then the last equation yields equation (3.1).

4. Theorems

In this section, with the aid of Proposition 3.1, we show the positivity of g_{ij} and the quasi-C-reducibility of an (a, b, f)-metric and find a sufficient condition of being C-reducible.

Now we are ready to prove that (g_{ij}) is positive definite on $\mathbb{C}(\ker B)$. This implies that $\mathbb{C}(\ker B)$ is the maximal domain \mathcal{D} of $TM \setminus O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined.

Theorem 4.1. (g_{ij}) is positive definite on $\mathbb{C}(\ker B)$.

Proof. Consider a one-parameter family of the (a,b,f)-metric $L^{\epsilon} = \alpha + \epsilon \beta$ with $0 \le \epsilon \le 1$. Let g^{ϵ} be the fundamental tensor of L^{ϵ} . For $\epsilon > 0$, by Proposition 3.1, we have

$$\det(g_{ij}^{\epsilon}) = \frac{L^{\epsilon} \gamma^{\epsilon}}{\epsilon \alpha \beta} \det A^{\epsilon},$$

where $A^{\epsilon} = (\frac{L^{\epsilon}}{\alpha}a_{ij})$, $\gamma^{\epsilon} = \epsilon\beta + \epsilon^2b^2\alpha > 0$, and so $\det(g_{ij}^{\epsilon})$ is positive. In particular, none of the eigenvalues of (g_{ij}^{ϵ}) can vanish. For $\epsilon = 0$, $L^{\epsilon} = \alpha$ and all the eigenvalues of $(g_{ij}^{\epsilon}) = (g_{ij})$ are positive. Since $\det(g_{ij}^{\epsilon})$ is continuous for ϵ , all the eigenvalues of (g_{ij}^{ϵ}) are positive by the intermediate value theorem. And so all the eigenvalues of (g_{ij}) are positive. This means that (g_{ij}) is positive definite.

Next, we show that (a, b, f)-manifolds are quasi-C-reducible and we determine a sufficient condition under which (a, b, f)-manifolds are C-reducible. We start with the definitions of quasi-C-reducibility and of C-reducibility.

DEFINITION 4.1. A Finsler manifold of dimension n, $n \geq 3$, is quasi-C-reducible if there exists a symmetric Finsler tensor field Q_{ij} satisfying $Q_{ij}y^j=0$ and $A_{ijk}=\mathfrak{S}_{(ijk)}\{Q_{ij}A_k\}$, where $A_k:=g^{ij}A_{ijk}$.

DEFINITION 4.2. A Finsler manifold of dimension n, $n \geq 3$, is C-reducible if A_{ijk} is in the form $A_{ijk} = \frac{1}{n+1}\mathfrak{S}_{(ijk)}\{h_{ij}A_k\}$, where $h_{ij} := g_{ij} - L_iL_j$ is the angular metric of L.

Note that for (a, b, f)-metric, the Cartan tensor is

$$A_{ijk} := \frac{L}{4} (L^2)_{y^i y^j y^k} = \frac{L}{2} (g_{ij})_{y^k}$$
$$= \frac{L}{2} \mathfrak{S}_{(ijk)} \left\{ \left(\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} \right) (\alpha \beta_k - \beta \alpha_k) \right\}.$$

By Proposition 3.1, we get

$$A_k = \frac{\lambda}{2} (\alpha \beta_k - \beta \alpha_k),$$

where $\lambda = \left(\frac{n+1}{\alpha} - \frac{b^2L}{\beta\gamma}\right)$. Since $rank(b_{ij}) = 2$, $\lambda \neq 0$. And if we let

$$Q_{ij} = \frac{L}{\lambda} \left(\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} \right),\,$$

we have $A_{ijk} = \mathfrak{S}_{(ijk)}\{Q_{ij}A_k\}$. Because Q_{ij} is symmetric and $Q_{ij}y^j = 0$ by Euler's theorem, we have

THEOREM 4.2. (a, b, f)-manifolds are quasi-C-reducible.

Since the angular metric h_{ij} for (a, b, f)-manifold is $L \cdot (\alpha_{ij} + \beta_{ij})$, we can conclude

THEOREM 4.3. If an (a, b, f)-metric $L = \alpha + \beta$ satisfies

$$\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} = \frac{\lambda}{n+1} (\alpha_{ij} + \beta_{ij}),$$

or equivalently $b^2 \alpha \alpha_{ij} = (n\gamma + \beta)\beta_{ij}$, then the (a, b, f)-manifold is C-reducible.

REMARK. If $A_i = 0$ for a C-reducible manifold, then $A_{ijk} = 0$ immediately. And so the manifold is Riemannian. For a C-reducible (a, b, f)-manifold with $A_i = 0$, we can show that

$$g_{ij}(x) = g_{pq}(x)f_i^p f_j^q.$$

In other words, such an (a, b, f)-manifold is an almost Hermitian manifold. For its proof, we refer the readers to [2].

ACKNOWLEDGEMENT. The author would like to thank Prof. M. Hashiguchi for his valuable comments on the use of notations. This simplifies the appearance of many equations.

References

- D. Bao, S. S. Chern, and Z. Shen, An introduction to Riemannian-Finsler geometry, Graduate Texts in Mathematics, Springer-Verlag, Heidelberg, New York, 2000.
- [2] Y. Ichiiyo, Almost Hermitian Finsler manifolds, Tensor(N.S.) 37 (1982), 279-284.
- [3] Y. Ichiiyō and M. Hashiguchi, On(a, b, f)-metrics, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem **28** (1995), 1–9.
- [4] _____, On(a, b, f)-metrics II, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem **29** (1996), 1–5.

464 Nany Lee

- [5] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Shigaken, 1986.
- [6] _____, On C-reducible Finsler spaces, Tensor(N.S.) 24 (1972), 29–37.

Department of Mathematics, The University of Seoul, Seoul 130-743, Korea E-mail: nany@uos.ac.kr