• Title/Summary/Keyword: metric tensor

Search Result 105, Processing Time 0.028 seconds

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

RESULTS CONCERNING SEMI-SYMMETRIC METRIC F-CONNECTIONS ON THE HSU-B MANIFOLDS

  • Uday Chand De;Aydin Gezer;Cagri Karaman
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.837-846
    • /
    • 2023
  • In this paper, we firstly construct a Hsu-B manifold and give some basic results related to it. Then, we address a semi-symmetric metric F-connection on the Hsu-B manifold and obtain the curvature tensor fields of such connection, and study properties of its curvature tensor and torsion tensor fields.

Paracontact Metric (k, 𝜇)-spaces Satisfying Certain Curvature Conditions

  • Mandal, Krishanu;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The object of this paper is to classify paracontact metric ($k,{\mu}$)-spaces satisfying certain curvature conditions. We show that a paracontact metric ($k,{\mu}$)-space is Ricci semisymmetric if and only if the metric is Einstein, provided k < -1. Also we prove that a paracontact metric ($k,{\mu}$)-space is ${\phi}$-Ricci symmetric if and only if the metric is Einstein, provided $k{\neq}0$, -1. Moreover, we show that in a paracontact metric ($k,{\mu}$)-space with k < -1, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.

A DECOMPOSITION OF THE CURVATURE TENSOR ON SU(3)=T (k, l) WITH A SU(3)-INVARIANT METRIC

  • Son, Heui-Sang;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.229-241
    • /
    • 2015
  • In this paper, we decompose the curvature tensor (field) on the homogeneous Riemannian manifold SU(3)=T (k, l) with an arbitrarily given SU(3)-invariant Riemannian metric into three curvature-like tensor fields, and investigate geometric properties.

MEDICAL IMAGE ANALYSIS USING HIGH ANGULAR RESOLUTION DIFFUSION IMAGING OF SIXTH ORDER TENSOR

  • K.S. DEEPAK;S.T. AVEESH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.603-613
    • /
    • 2023
  • In this paper, the concept of geodesic centered tractography is explored for diffusion tensor imaging (DTI). In DTI, where geodesics has been tracked and the inverse of the fourth-order diffusion tensor is inured to determine the diversity. Specifically, we investigated geodesic tractography technique for High Angular Resolution Diffusion Imaging (HARDI). Riemannian geometry can be extended to a direction-dependent metric using Finsler geometry. Euler Lagrange geodesic calculations have been derived by Finsler geometry, which is expressed as HARDI in sixth order tensor.

A NOTE ON CONTACT CONFORMAL CURVATURE TENSOR

  • Pak, Jin-Suk;Shin, Yang-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.337-343
    • /
    • 1998
  • In this paper we show that every contact metric manifold with vanishing contact conformal curvature tensor is a Sasakian space form.

  • PDF

COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES

  • Uday Chand De ;Mohammad Nazrul Islam Khan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1233-1247
    • /
    • 2023
  • The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.