• Title/Summary/Keyword: metric space

Search Result 728, Processing Time 0.028 seconds

Generalized Principal Ratio Combining of Space-Time Trellis Coded OFDM over Multi-Path Fading Channels (다중 경로 채널에서 공간-시간 트렐리스 부호화된 OFDM의 일반화된 준최적 검파)

  • Kim, Young-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • We present a space-time trellis coded OFDM system in slow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis shows that the decoding metric of GPRC includes the metrics of maximum likelihood(ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective fading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

THE STRUCTURE JACOBI OPERATOR ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KI, U-HANG;KIM, SOO-JIN;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.337-358
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure $(\phi,\;\xi,\;\eta,\;g)$ in a nonflat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_\xi$ commutes with both the structure tensor $\phi$ and the Ricc tensor S, then M is a Hopf hypersurface in $M_n(c)$ provided that the mean curvature of M is constant or $g(S\xi,\;\xi)$ is constant.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

Spatial Locality Preservation Metric for Constructing Histogram Sequences (히스토그램 시퀀스 구성을 위한 공간 지역성 보존 척도)

  • Lee, Jeonggon;Kim, Bum-Soo;Moon, Yang-Sae;Choi, Mi-Jung
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2013
  • This paper proposes a systematic methodology that could be used to decide which one shows the best performance among space filling curves (SFCs) in applying lower-dimensional transformations to histogram sequences. A histogram sequence represents a time-series converted from an image by the given SFC. Due to the high-dimensionality nature, histogram sequences are very difficult to be stored and searched in their original form. To solve this problem, we generally use lower-dimensional transformations, which produce lower bounds among high dimensional sequences, but the tightness of those lower-bounds is highly affected by the types of SFC. In this paper, we attack a challenging problem of evaluating which SFC shows the better performance when we apply the lower-dimensional transformation to histogram sequences. For this, we first present a concept of spatial locality, which comes from an intuition of "if the entries are adjacent in a histogram sequence, their corresponding cells should also be adjacent in its original image." We also propose spatial locality preservation metric (slpm in short) that quantitatively evaluates spatial locality and present its formal computation method. We then evaluate five SFCs from the perspective of slpm and verify that this evaluation result concurs with the performance evaluation of lower-dimensional transformations in real image matching. Finally, we perform k-NN (k-nearest neighbors) search based on lower-dimensional transformations and validate accuracy of the proposed slpm by providing that the Hilbert-order with the highest slpm also shows the best performance in k-NN search.

Spatial Characteristics Shown in Landscape Design -Focusing on Five Winning Design Proposals for the Seoul City Hall Plaza Design Competition (조경설계에 나타난 공간의 특성 -시청 앞 광장 현상공모 입상작을 중심으로-)

  • 김정호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • The purpose of this study is to investigate how five winning design proposals for the Seoul City Hall Plaza Design Competition have shown the spatial characteristics by comparing and reviewing them. Each design proposal shown different approaches that reveal the spatial characteristics. Through scrutinizing these design proposals, some similar and different aspects among them were identified. In order to examine these aspects, the winning design proposals were analysed and compared based on five categories such as design concepts, main facilities, representation of historical images, spatial connection, and event programs. Gilles Deleuze explained the spatial characteristics as striated space and smooth space. Striated space could be defined as sedentary space. It is distant vision-optical space that has dimensional, metric, and centered characteristics, whereas smooth space is defined as nomadic, close vision-haptic space that has directional and acentered characteristics. This study focused on the analysis of spatial characteristics according to smooth space and striated space. Based on the analysis of the spatial characteristics according to the smooth and striated space, some design proposals shown more characteristics of striated space while other proposals shown more characteristics of smooth space. Those design proposals that shown more characteristics of smooth space reveal flexible or changeable shape and void space, whereas the others that shown more characteristics of striated space try to suggest apparent guidelines for the future use by retaining the idea of a plaza through the concrete shape. This study, which analyzed the winning design proposals based on the spatial characteristics according to the smooth and striated space, can be used to analyze the designs and could help to develop a new methodology with a different perspective. furthermore, it could provide practical and creative design strategies for landscape design.

A Case Study of Space Utilization on Compact Houses in Japan to build Compact-but-effective Houses in Korea (강소주택 실효성 논의를 위한 일본 소형주택 공간 활용 사례 분석)

  • Seo, Min-Woo;Han, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.1
    • /
    • pp.148-158
    • /
    • 2012
  • The objective of this study is to find a possible application of small space utilization of GangSo Housing, so called compact-but-effective housing, through analyzing that of Japanese small housing. We analyze openness of view and flexibility of spaces divided by the physical and architectural aspects as first component and the psychological and interior space aspects as second component. The results showed that Japanese small houses have various unit plan compared to uniformity of Korean houses. Openness of view in Japanese small housing is accomplished by letting in light from the outside using position and shape of the window, looking more spacious using courtyard, void spaces, or sliding door hanging from the ceiling, and creating deception of view using floor-wall plan and appropriate materials. Flexibility of spaces is achieved by combination of first and second components, multipurpose of space and furniture, and variety of storage methods. It is necessary to improve spatial efficiency with consideration of volume-metric planing rather than flat-plane and develop various unit plans to meet residents' needs and demands on compact-but-effective houses.

  • PDF