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THE STRUCTURE JACOBI OPERATOR
ON REAL HYPERSURFACES IN A
NONFLAT COMPLEX SPACE FORM

U-HaNG K1, Soo JiN KiM, AND SEONG-BAEK LEE

ABSTRACT. Let M be a real hypersurface with almost contact met-
ric structure (¢, £,m, g) in a nonflat complex space form M, (c). In
this paper, we prove that if the structure Jacobi operator R¢ com-
mutes with both the structure tensor ¢ and the Ricc tensor S,
then M is a Hopf hypersurface in My (c) provided that the mean
curvature of M is constant or g(S¢,£) is constant.

0. Introduction

An n-dimensional complex space form M,,(c) is a Kaehlerian manifold
of constant holomorphic sectional curvature c.

As is well known, complete and simply connected complex space forms
are isometric to a complex projective space P,C, a complex Euclidean
space C,, or a complex hyperbolic space H,,C according as ¢ > 0,¢ =0
or ¢ < 0. :

Let M be a real hypersurfaces of M, (c). Then M has an almost
contact metric structure (¢,£,7n, g) induced from the Kaehlerian metric
and complex structure J of M,(c). The structure vector £ is said to be
principal if A = of, where A is the shape operator in the direction of
the unit normal N and a = n(A¢). In this case, it is known that « is
locally constant [10] and that M is called a Hopf hypersurface [15]. We
denote by V, the Levi-Civita connection with respect to the Riemannian
metric tensor g. Takagi[18] classified all homogeneous real hypersurfaces
of P,C as six model spaces which are said to be Ay, A,, B, C, D, and
E, and Cecil-Ryan[2] and Kimura[l11l] proved that they are realized as
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the tubes of constant radius over Kaehlerian submanifolds. Namely, he
proved the following

THEOREM T. [18] Let M be a homogeneous real hypersurface of
P,C. Then M is a tube of radius r over one of the following Kaehlerian
submanifolds:

(A1) a hyperplane P,_;C, where 0 <r < T

(A2) a totally geodesic P,C(1 <k <n-—2), where0 <7 < %,

) a complex quadric Q,_1, where 0 <r < I,

) PiC x Pn_1)/2C, where 0 < r < § and n(> 5) is odd,

) a complex Grassmann Gq5C, where 0 < r < 7 andn =9,

) a Hermitian symmetric space SO(10)/U(5), where 0 < r < %
and n = 15.

(B

(C
(D
(E

Also Berndt[1] showed that all real hypersurfaces with constant prin-
cipal curvatures of a complex hyperbolic space H,C are realized as the
tubes of constant radius over certain submanifolds when the structure
vector £ is principal. Nowadays in H,C they are said to be of type Ay,
A;, A,, and B. He proved the following

THEOREM B. [1] Let M be a real hypersurface of H,C. Then M
has constant principal curvatures and £ is principal if and only if M is
locally congruent to one of the followings:

(Ag) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hyperplane H,,_,C,
(A2) a tube over a totally geodesic H,C(1 < k < n — 2),

(B) a tube over a totally real hyperbolic space H,R.

Let M be a real hypersurface of type A; or type Az in a complex
projective space P,C or that of type Ag, Ay, or As in a complex hyper-
bolic space H,C. Then M is said to be of type A for simplicity. By a
theorem due to Okumura[16] and to Montiel and Romero[14] we have

THEOREM O-MR. [14,16] If the shape operator A and the structure
tensor ¢ commute to each other, then a real hypersurface of a complex
space form M, (c),c # 0 is locally congruent to be of type A.

Characterization problems for a real hypersurface of type A in a com-
plex space form were studied by many authors (cf. [5], [6], [7], [9], [12]
and [14] etc.). :

The curvature tensor field R on M is defined by

R(X? Y) = [vXa VY] - V[X,Y]7
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where X and Y are vector fields on M. We define the Jacobi operator
field Rx = R(-, X)X with respect to a unit vector filed X. Then we
see that Rx is a self-adjoint endomorphism of the tangent space. It
is related with (the Jacobi vector equation) V4 (V;Y) + R(Y,¥)y =0
along a geodesic v. It is well-known that the notion of Jacobi vector
fields involve many important geometric properties. Some works have
recently studied several conditions on the structure Jacobi operator R,
and given some results on the classification of real hypersurfaces in a
complex space form([3], [4], [6], [8], and [15] etc). One of them, Cho and
one of the present authors proved the following:

THEOREM CK. [3] Let M be a connected real hypersurface of P,C.
If M satisfies R¢¢ = ¢R¢ and at the same time satisfies R¢eA = AR;.
Then M is a Hopf hypersurface. Further if n(A€) # 0, then M is locally
congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane P, ;C, where 0 <r < § andr # J),

(A2) a tube of radius r over a totally geodesic PrC(1 < k < n — 2),
where 0 <7 < § and r # T.

In this paper we study a real hypersurface of a nonflat complex space
form My (c) which satisfies Re¢p = ¢ R¢ and at the same time RS = SR,
where S denotes the Ricci tensor of the hypersurface. The main purpose
of the present paper is to improve Theorem CK.

All manifolds in the present paper are assume to be connected and
of class C'® and the real hypersurfaces supposed to be orientable.

1. Fundamental facts of real hypersurfaces

Let M be a real hypersurfaces of M,(c) and N be a unit normal
vector field on M. By V we denote the Levi-Civita connection with
respect to the Fubini-Study metric § of My,(c). Then the Gauss and
Weingarten formulas are given respectively by

VxY = VxY 4+ g(AX,Y)N, VxN = —AX

for any vector fields X and Y on M, where g denotes the Riemannian
metric of M induced from § and A is the shape operator of M in M, (c).
For any vector field X tangent to M, we put

JX = ¢X + n(X)N, JN = —¢.
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Then we may see that the structure (¢,&,n,g) is an almost contact
metric structure on M, that is, we have

¢’ X = —X+n(X)E, g(¢X,4Y) = g(X,Y) — n(X)n(Y),
n€) =1, ¢¢ =0, n(X) =g(X,§)

for any vector ﬁel(js X and Y on M.
From the fact VJ = 0 and making use of the Gauss and Weingarten
formulas, we obtain '

(1.1) (Vx9)Y =n(Y)AX — g(AX,Y)¢, Vx& = ¢AX.

Since the ambient space is of constant holomorphic sectional curva-
ture ¢, we have the following Gauss and Codazzi equations:

R(X.Y)Z = {{9(Y, )X - g(X, Z)Y +g(9Y, 2)$X

(1.2) ' —9(0X, Z)¢Y — 29(¢X,Y )9 Z}
+9(AY, Z)AX — g(AX, Z)AY,

(13) (TxAY = (Vy )X = (n(X)6Y — n(¥)oX — 29(6X,V)E),

where R is the Riemann-Christoffel curvature tensor on M.

In what follows, to write our formulas in convention forms, we denote
by a = g(Afag)’ﬂ = g(A2£?£)a7 = g(A3§:§) and h = TrA, and for a
function f we denote by V f the gradient vector field of f.

If we put U = V¢¢, then U is orthogonal to the structure vector £.
We get

(1.4) U = — A€ + a&,

which shows that g(U,U) = 8 — o®. Thus we easily see that ¢ is a
principal curvature vector, that is, A = o if and only if 8 — a2 = 0.
From the Gauss structure equation (1.2), the Ricci tensor S of M is
given by

c

4{(2n+ DI -3nQ¢&}+hA— A2,

(1.5) S
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I is an identity map, which implies

(1.6) S¢ = g(n— 1)¢ + hAE — A%
We put
(1.7) A€ = af + W,

where W is a unit vector field orthogonal to £. Then we have U poW
and W is also orthogonal to U. Further we have p? = 8 — o?

By the definition of U and the second equation of (1.1) and (1. 7)
is verified that

Now, differentiating (1.4) covariantly along M and using (1.1), we
find

n(X)g(AU + Vo, Y) + g(¢pX,VyU)
=g((VyA)X,§) — 9g(ApAX,Y) + ag(A9X,Y),

(1.9
which shows that

(1.10) (VeA), = 24U + Va
because of (1.3). From (1.9) we also have

(1.11) VeU = 3¢AU + a Al — BE + ¢V,

where we have used (1.1) and (1.8). Since W is orthogonal to U, we see,
using (1.1), that

(1.12) ng(VxW,§) = g(AU, X).
Because of (1.2), the structure Jacobi operator Ry is given by

(1.13) ReX = R(X,€)¢ = - (X — (X)) + aAX — n(AX)AE

L Y]

for any vector field X on M.
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2. The Jacobi operator of real hypersurfaces

Let M be a real hypersurface in a complex space form M,(c),c # 0
satisfying R¢;¢ = ¢ R, which means that the eigenspace of Ry is invariant
by the structure operator ¢. Then by (1.13) we have

(2.1) a($AX — APX) = g(AE, X)U + g(U, X) A¢.

Weset 2 = {p € M : u(p) # 0}, and suppose that © be nonvoid, that
is, & is not a principal curvature vector on M. In the sequel we discuss
our arguments on the open set §2 of M unless otherwise stated. Then, it
is, using (2.1), clear that o # 0 on 2. So a function A given by 8 = a)
is defined. Thus, replacing X by U in (2.1) and using (1.4), we find

(2.2) PAU = NAE — A%¢.
In what follows we assume that
() AL = pAE + ot
for certain scalars p and o on M. Then we have
(2.3) o= a(A—p).
Combining (x) with (2.2), it is seen that
(2.4) AU = (p— \)U.

From () and (1.7) we also have

(2.5) AW = pé+ (p— )W
and hence A
(2.6) AW = pAW + a(\ — p)W

by virtue of u # 0. _
Differentiating (*) covariantly along Q and taking account of (1.1),
we find

(VxA)ALY) + g(A(Vx A)K,Y)
+ g(A20AX,Y) — pg(APAX,Y)
=g(Vp, X)g(AE,Y) + pg((Vx A),Y)
+9(Vo, X)n(Y) + a(X — p)g(¢AX,Y)

(2.7)
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for any vector fields X and Y on M, which together with (1.3) and (1.10)
implies that
c

4

We put X = £ in (2.7) and use (1.10), (2.4), and the last equation.
Then we obtain

(Ve A)AE = pAU — ~U + %Vﬁ.

S5 = — AVa + pVa +g(Vp, )AL +9(Vo, )¢

(2.8) .
~{(p=Np+a-30 -3}V,

which connected to (2.4) and (x) gives

(AVB - pVB)
(2.9)  =-— A’Va+2pAVa — p*Va + g(Vo,£) A¢
+9(oVp—pVa, )+ M(p— N)(p+a—3)) - E}U.

Because of (2.3), we see, using (2.8), that

%dﬁ(g) = ada(§) + pda(W),

where d denotes the exterior differential operator, which together with
8 = aX implies that

(2.10) adA(€) = (2a — N)da(€) + 2uda(W).

We verify also, making use of (2.5) and (2.8), that

SdBOV) — ada(W) = u(dp(€) - da(&),

which enables us to obtain

(2.11) adA(W) = (20 — \da(W) + 2u(dp(€) — da(€)).
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Now, define a 1-form u by u(X) = g(U, X) for any vector field X, it
is, using (1.3) and (2.7), seen that
(Y In(X) = u(X)n(V)} + 5 (p — )a(4Y, X)
— g(A%9AX,Y) + g(A%pAY, X) + 2pg(¢ AX, AY)
(212)  —a(X - p){g(4AY, X) — g($AX, AY)}
= g(AY, (VxA)§) — g(AX, (Vy A)§) + dp(Y)g(AE, X)
— dp(X)g(A&,Y) +d(B — po) (Y )n(X) — d(B — pe)(X)n(Y)-

On thé other hand, differentiating (2.5) covariantly along €2, we find
(Vx AW + AVxW = du(X)E+pVxE+d(p—a)(X)W +(p—a)VxW.
By taking the inner product this with W, we get
(2.13) g(Vx AW, W) = =2(p — Nu(X) + dp(X) — da(X)
with the aid of (2.4) and the fact that W is a unit orthogonal to . We
also have by applying &

(214) ug(Vx AW &) = (p— N)(p — 20)u(X) + 2dB(X) - ada(X),

where we have used (1.12) and (2.4), which together with the Codazzi
equation (1.3) gives

(215)  a(VwA) = {(o— N~ 20) - S)U + ;Y6 - aVa,

(2.16)  w(VeAW = {(p— A)(p - 2a) — —E}U + %Vﬂ — aVa.

Replacing X by pW in (2.12) and making use of (1.7), (1.10), (2.4),
(2.5), (2.6), (2.14), and (2.15), we find
aAVa — éAVﬂ + %(p — o)V
+a(A - p)Va — a(A — a)Vp
= {(p = N(a\ — 29X + 2pa + 0?) + g(A —a)}U
— pdp(W)AE — pd(B — pa)(W)E.

(2.17)
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If we replace X by A¢ in (2.7) and take account of (1.7), (1.10), (2.

(2.13)—(2.16), and (), then we obtain

1
—(AVSB — pVB) + a®VA + u?Vp

2
= g(AE, Vp)AL + g(AE, Vo)€
+{(p = M) (20 ~ 3ap +2a)) + £ (3a — 2N))U.

Substituting (2.9) into this, we find

&>V + 14’Vp — A*Va + 2pAVa — p*Va
= {9(A¢, Vp) — do(£)} AL
(2.18) +{9(A¢, Vo) + pdo(§) — (B — pa)dp(€)}¢

+{(p — M) (oA — 3ap + aX +3)?) + 2(30( - \)}U.

Now, it is, using (2.1), verified that
(219)  apAPAX +aA’X = pg(AE, X)AE + n(X)AE — g(AU, X)U

because of properties of almost contact metric structure.
On the other hand, we have from (1.9)

VxU + g(A%¢, X)E = ¢(Vx A)E + pAGAX + aAX,
which together with () and (2.19) yields

VxU + {pg(A§, X) + a(A — p)n(X)}£
(220) = 9(VxAE+aAX - A2X

+ {pg(A8, X) + (A - pIn(X)}A — £ 2g(AU, X)U.

If we put X = U in (2.20) and take account of (2.4), then we get
(2.21) VuU = ¢(VuA)E + (p = A)(2a: — p)U.
Using (1.7) and (2.4), we can write the equation (1.11) as

(2.22) VeU = p(BA = 3p+ )W — a(A — a)é + ¢Va.

345

4),
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Since the exterior derivative du of a 1-form u is given by
: 1
du(Y, X) = 5{Yu(X) - Xu(Y) - u([Y, X])},

we verify, using (1.8), (2.22), and (%), that

where a 1-form w is defined by w(X) = g(W, X), which shows that

(2.24) | du(¢,U) = pda(W).

Now, differentiating (2.4) covariantly, we find
(2.25) (VxA)U + A(VxU) =d(p— N)(X)U + (p— A)VxU.

If we take the inner product this with £ and make use of (1.3) and (2.22)
then we obtain

(VuA)
(2.26) = EMW +eU — u(3X — 3p + Q) {AW — (p— AW}

+ a(A — a){AE — (p— N} — ApVa + (p — )¢V,
where we have put € = d(p — A\)(§). Thus, it follows, using (2.1), that

¢(VUA)§

(2.27) = {3(A - R)(A - a)

+(p— N (Va — da(€)) — AVa + ig(Ag, Va)AE.

_c_ 1

ada(U)}U + peW

Substituting this into (2.21), we get
\5%

c

={lp=NBA-a=-p)+7

@2 %da(U)}U + AVa - (p— \Va

+{(p— Nda(€) - 9(A€, Vo))t — pfe + —g(Ag, Va)}W,
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which tells us that
A(VUU) - (,0 - )\)VuU
= A*Va - 2(p— M)AVa + (p — A\)?Va
(2.29) +{(p — Ndo(€) — g(AE, Va) A - (p — N}
~ (e + ~g(A&, Va) (AW ~ (p ~ W},
Because of (1.3) and (1.4), the relationship (2.25) implies that

Zi{ (Y Jw(X) = n(Ow(¥)}
+ g(AX,VyU) — g(AY,VxU)
= d(p = (Y Ju(X) - d(p — (X )u(¥)
+ (p = M{(Vyu)(X) = (Vxu)(¥)}.

If we replace X by U in (2.30) and make use of (2.4), then we obtain

(2.30)

A(VyU) = (p = NVuU = p2(VA = Vp) +d(p — A)(U)U,
which together with (2.29) gives
A’Va — 2pAVa + p?Va + 20(AVa — pVa) + A2 Va
= {9(4¢, Va) — (p — MNda(§) HAEL — (p — N)¢}
+ e+ 2g(AE, Va) (AW — (p— )W)
+ (VA — Vp) +d(p — \)(U)U.

(2.31)

Substituting (2.18) into (2.31) and using (2.9), we find
2u%(Vp — V) + d(A — p)(U)U — 3(A — a){(p — N)? - E}U

= {9(A§, Va) — do(§) — 2Adp(§)} AL
(2.32) + {9(A¢, Vo) + (p — 2X)do(§) — 0dp(£)}€
+{9(A¢, Va) — (p — A)da(§) HAE — (p — )&}

1
+ufe + —g(AE, V) HAW — (p - A)W}
Since A¢ and AW are orthogonal to U, it follows that

(2.33) d(p—N(U) =3(A—a)}{(p = N* - 7}.
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Using this, (1.7) and (2.5), the equation (2.32) can be written as
c
pA(Vp = VA) = p?(a€ + W) + 300 — 2){(p = N)* = 7}U

for some functions a and b, which shows that a = ¢ and b = d(p—\)(W).
Since A — o does not vanish on €2, it follows that

(2.34) a(Vp — VA) = afeé +bW) + {3(p — N)? — ZC}U.

On the other hand, if we take the inner product (2.32) with W, and
straitforward calculation, then we obtain

2dp(W) = 3audp(£) + alda - 3\)da(W) — u(da — N)da(€),

where we have used (2.3), (2.10) and (2.11). Comparing this with (2.10)
and (2.11), it is seen that

ad(p — \)(W) = ud(p — A)(§),
that is, ba = pe. From this and (1.7), the equation (2.34) becomes
(2.35) a(Vp—VA) = A€ +3{(p— \)? — E}U.

REMARK 1. We notice here, using (2.33), that p— A #0on Q. O
3. Lemmas

We will continue now, our arguments under the same hypotheses
R¢p = R and (*) as in section 2.
First of all, we prove

LeEmMMA 3.1. Let M be a real hypersurface satisfying R¢¢p = ¢R;
and (*). Then we have

(3.1) a(Vp—=VX)=0U

on (), where 0§ is given by

3
(3.2) 6=3(p—N)?>- °
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Proof. By differentiating (2.35) covariantly and taking the skew-sym-
metric parts obtained one, we find

da(Y)d(p — A)(X) — da(X)d(p — A)(Y)
—6(p — M{d(p = N)(Y)u(X) — d(p - M)(X)u(Y)}
= de(Y)g(A€, X) — de(X)g(AE, Y) - Fea(4Y, X)
— 2eg(AdAY, X) + 6du(Y, X)
by virtue of (1.3), or using (2.35) again,
0{u(Y)da(X) — u(X)da(Y)} - seag(dY, X)
— 2eag(ApAY, X) + Badu(Y, X)
)+ (

= {eda(Y )—ads(Y 6(p — Aeu(Y)}g(4¢, X)
—{eda(X) — ade(X) + 6(p — Neu(X)}9(4E,Y).

(3.3)

Putting Y = £ in (3.3), we get
e{da(X) +6(p — Nu(X)} — ade(X)
= {Zda(¢) - d=(€)}g(AX, &) + bdu(§, X)

0
+{=da(§) — 2e(p — M}u(X).
Combining this with (3.3), we have

{u(Y)da(X) — u(X)da(Y)}
— 5eag(gY, X) - 2cag(ADAY, X) + fadu(Y, X)
= (6du(€, ¥) — 25(p — \u(¥) + ~da(€)u(Y)}g(A¢, X)
— {0du(g, X) ~ 25(p ~ Nju(X) + * da(€u(X)}g(4, V)

If we put Y = U in this and take account of (1.4), (2.4), and (2.24),
then we get

{~ubda(W) + (A — @)da(€) — 2¢(p — N’} AE

3.4
(3:4) = 0{u*Va — da(U)U} + —Zc—,u,asW —2ae(p — \)pAW + 0aTU,
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where g(TU, X) = du(U, X).
On the other hand, it is, using (2.20), verified that

TU = {(p~ NBA—a—p)+ 5 + ida(U)}U
+AVa+ (A+a-p)Va
~ VB~ HeW + (o= Nda(€)é — {da(®) + Lda(w)}Ag,
where we have used (2.14) and (2.27), or using (2.3), (2.8), and (2.10),
C
2
~ {da(®) + Eda(W) - dA(©)}A¢.

TU ={2(p - N(BA—a—p) + = + éda(U)}U +a(Va— V)

Substituting this into (3.4), we find

{9(/\da(§) — ad\(€)) — 2e(p — N’} A€
(3.5) = fa(\Va — aVA) + guaaW — 2ea(p — \)pAW
+00{2(p — \)(B\ — & — p) + g}U.
If we take the inner product (3.5) with W and use (2.5), we find
O{urda(€) — padA(€) — arda(W) + o?dA\(W)}
30 2((p— N = Dyepia = 0.
Since € = d(p — A)(€), we, using (2.11) and this, verify that
30{(A — 2a)da(§) — 2uda(W)} + 0a{8dp(§) — 5dA(£)} =0,

which together with (2.10) implies that 8d(p — X\)(§) = 0, that is, fc =0
and hence € = 0 because of (3.2). Thus (3.1) is established by virtue
of (2.35). O

LEMMA 3.2. Under the same hypotheses as those in Lemma 3.1, if
0 # 0 and d(h — p)(£) = 0, then we have
(3.7) Va =3\ —2p)U,
(38)  aVA={2(p—N)BA—a—p) + A3\ —2p) + g}U,
(3.9) aVp = (p* — 2pa + 20\ — E)U
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Proof. Using (3.1) and (3.2), it is clear that aVé = 6(p — A)0U.
Thus, differentiating (3.1) covariantly and taking the skew-symmetric
part obtained one, we find

do(Y)d(p — A)(X) — da(X)d(p — N)(Y) = bdu(Y, X),
which together with (3.1) and 0 # 0 gives

(3.10) da(Y)u(X) — da(X)u(Y) = adu(Y, X).
Since ¢ = 0 and 6 # 0, (3.6) can be written as
(3.11) Ma(§) — adA(§) = 2uda(W) — 2a(dp(§) — do(§)),

where we have used (2.11).
On the other hand, if we take the trace of (1.9) and make use of (1.3),
(1.4) and (3.10), then we obtain

ad(h — a)(§) = pda(W),
which together with (3.11) implies that

Mo (€) — adA(€) = 20d(h — p)(€).
Thus, (3.5) turns out to be

(3.12) AVa —aVA =2{(p— N2+ (p— \)(a — 2)) — E}U

since we have € = 0 and d(h — p)(§) = 0 was assumed.
Using the same method as that used to derive (3.10) from (3.1), we
can derive from (3.12) the following:

ANY)da(X) — dA(X)de(Y)
= (p = M{d(a — 2A)(Y)u(X) — d(a — 2A)(X)u(Y)}

+ 1o =N+ (p = N —22) - T}du(Y, X),

where we have used (3.1). From (3.10), (3.12) and the last equation, we
verify that 8da(W) = 0 and hence da(§) = 0 by virtue of 8 # 0. Thus
putting Y = £ in (3.10), we have du(£, X)) = 0 for any vector field X.
Therefore (2.23) turns out to be ¢Va = p(2p—3A)W, which shows that
Va = (3X — 2p)U. Thus (3.10) is reduced to du = 0. So (2.28) implies
that

%Vg(a U)={(p—NBr—a—p)+(A—a)(Br—2p) + E}U

withe the aid of (3.7). From this and (3.7), it follows, using g(U,U) =
a(X — a), that (3.8) is accomplished. Because of (3.1) and (3.8), we see
that (3.9) is established. Hence, required formulas are obtained. O
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REMARK 2. In the proof of above lemma, we verify that Lemma 3.2
is valid if we replace the assumption 6 # 0 and d(h — p)(§) = 0 by
du(¢, X) = 0 for any vector field X.

LEMMA 3.3. Let M be a real hypersurface satisfying R¢¢ = ¢R;
and (x) in My(c). If Vo = 0, then § is void.

REMARK 3. This lemma was proved in the previous paper [8]. But,
we give a simple proof of it here.

Proof. Since Vo = 0 is assumed, we see, making use of (2.3) and (3.1),
that

(3.13) (p— A)Va + 60U =0,

which implies da(§) = 0 and da(W) = 0 by virtue of Remark 1.
By differentiating (3.13) and using (3.1), we obtain (3.10) and hence
fdu(§, X) =0. :

Now, if we suppose that du(¢, X) # 0. Then we have § = 0 and hence
(p—A)? = £. So (3.13) and Remark 1 tells us that Vo = 0. Since we
have Vp = V), it is seen that V3 = aVp. From these and (2.10) we
have dp(§) = 0. Thus, (2.8) turns out to be

(3.14) aVp=2(p - A2\ — a)U

by virtue of (p — X\)?> = £. Using above arguments, it is, making use

of (3.14), verified that (p — A)(2XA — a)du(§, X) = 0 and consequently
2\ —a = 0, that is, 2u% +a? = 0, which produces a contradiction. Thus,
we have du(§, X) = 0 on . By Remark 2, we verify that Lemma 3.2 is
valid. Combining (3.13) with (3.2) and (3.7), we have

3
(3.15) plp—X) = e
Thus, (3.2) is reduced to
(3.16) 0= (p—A(2p—3\).

Differentiation (3.15) gives (p—A)Vp = —pOU because of (3.1), which
together with (3.16) yields

Vp = p(3\ - 2p)U
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and hence Vp = (p?> — 2¢)U with the aid of (3.15), or using (3.7)
(3.17) Vp=pVa.
If we substitute Vp = (p? — 2¢)U into (3.9), then we obtain
c

' 9 3
1 L0 G B
(3.18) a(p® = Jep+ 50) 1°

Differentiating this and taking account of (3.17), we find

C C
{9a(p?® — Z) —3p° — Z}Voz =0,

which connected to (3.18) gives Va = 0. Therefore we see, using (3.7)
and (3.16), that 6 = 0, which together with (3.2) and (3.15) implies that
A =0, a contradiction. Hence, 2 is void. O

REMARK 4. We notice here, using (1.6) and (1.13), that the condition
(*) with o = ¢, that is, 426 = pA¢ + $€ if and only if R¢eA = AR on
Q. In fact, from (1.13) we have

9(ReY, AX) — g(Re X, AY)
(3.19) = g(A%€,Y)g(4¢, X) - g(A%¢, X)g(4L,Y)
+ £ {9(48,Y)n(X) - g(AE, Xn(Y)}.

The if part is immediately true from above equation. So we are going
to check the only if part. Since R¢A — AR¢ = 0, by putting X = { in
(3.19), we find
(3.20) EA{ — BAL — a A% + zag.

Substituting this into (3.19), we obtain
p{w(Y)g(A%, X) — w(X)g(A%,Y)}
= B{n(X)g(A¢,Y) — n(Y)g(A¢, X)},
where we have used (1.7). Replacing X by A&, we have
pA%E = (v = Ba)AE + (B* — a)é

by virtue of u? = 8 — o?. If we put u?p = v — Ba, then a function p is
defined on . Hence, it follows that

A%¢ = pAE + (B — pa)é.
From this and (3.20) we see that 8 = pa + § because of p # 0.



354 U-Hang Ki, Soo Jin Kim, and Seong-Baek Lee

4. Real hypersurfaces satisfying

Let M be a real hypersurface of a complex space form M,(c),c # 0.
Suppose that the Ricci tensor S of type (1,1) and the Jacobi operator

R, with respect to the structure vector £ commute to each other, that
is, R¢S = SR¢. Then we have

g(AB‘gy Y)g(Afa X) - g(A3€7 X)g(Aé-) Y)
= g(A%,Y)g(hAE - 16, X) — g(A%€, X)g(hAE - 26,Y)

+ {948, Y n(X) — g(AE, Xm(¥)},
where we have used (1.6) and (1.13), which shows that
(41)  aA% = (ah— DA% + (v - Bh+ DAL + £ (6~ hat.

Combining above two equations, we, using (1.7), that

p{g(A%,Y)w(X) — g(A%, X)w(Y)}
= B{n(Y)g(A¢, X) —n(X)g(A¢,Y)}.

Putting Y = A€ in this, we find
H2g(A%E, X) = pyw(X) — Bag(AE, X) + Bn(X).
Thus, it follows that |
prA%E = (v — o) A€ + (B° — a)é
and consequently
(42) A%E = pAE + (B — pa)é,
where we have put p?p = v — Ba and p?(8 — pa) = 3% — ay on Q. Thus

the condition (*) stated in section 2 is established.
From (4.2) we have

A% = (p* — B — pa) AL + p(B — pa)t.
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Comparing this with (4.1), we find

c
(4.3) wh=p) (B —pa—7)=0.

Let © be a set of points such that u(p)(h(p) — p(p)) #0 at p € M.
Then we have 8 — pa = £ on €. Thus, by Lemma 3.3 we see that £ is
a principal curvature vector. Hence we have h = p on 2. From this fact
and (4.2), the equation (1.6) turns out to be

where we have put g(S¢,£) = £(n — 1) ~ (8 — ha).

If g(S¢,£) =const., then we conclude that £ is a principal curvature
vector by virtue of Lemma 3.3. Hence (2.1) implies that A¢ = ¢A if
a#0.

Thus, by Theorem O-MR, we have

THEOREM 4.1. Let M be a real hypersurface in a nonflat complex
space form M, (c). If it satisfies Re¢ = ¢R¢, ReS = SR and g(S¢,§) =
const., then M is locally congruent to be of type A provided that
n(A¢) # 0.

REMARK 5. It is proved in [8] that a real hypersurface satisfying
Rep = ¢R, and at the same time S = 7& for some constant 7 in a
complex space form M, (c) is a Hopf hypersurface in M, (c).

According to Theorem 4.1 and Remark 4, we have

COROLLARY 4.2. Let M be a real hypersurface in a nonflat complex
space form. If it satisfies R¢¢ = ¢R¢ and at the same time R¢ A = AR,
then M is locally congruent to be of type A provided that n(A¢) # 0.

Now, we prove

THEOREM 4.3. Let M be a real hypersurface with constant mean
curvature in a nonflat complex space form. If it satisfies R¢¢ = ¢R¢ and
at the same time satisfies R¢S = SR, then M is locally congruent to
be of type A provided that n(Ag) # 0.

Proof. By Lemma 3.3 and (4.3), we may only discuss the case where
h = p on Q. The mean curvature of M being constant, (3.1) becomes

(4.5) aVA = —6U.
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This shows that d\(¢) = 0 and dA(W) = 0. Thus, we verify, using (2.10)
and (2.11), that {(2\ — a)? + 4p?}da(€) = 0 since we have Vp = 0. So
we have da(§) = 0. Hence, the same method as that used in Lemma
3.2, it is, making use of (4.5), seen that 8du(¢,X) = 0 for any vector
field X.

If we assume du(§,X) # 0 on 2, then we have § = 0 and hence
VX = 0. So, by definition we have V3 = AV, which together with
(2.3) and da(¢) = 0 gives do(£) = 0. We also have da(W) = 0 because
of (2.11). From these'facts (2.8) and (2.17) are reduced respectively to

AVa = (p— %A)w +(p=N2A—a)l,

(4.6) 1 T,
(a 2)\)AV04+ (2/\p+ 5

= (p — A)(3aX — 2pa — 202U,

al — ap)Va

where we have used (p — A\)?> = £. Combing the last two equations, it
follows that

MVa = 2(p — \)(aX — 2)% + 202 — 4pa)U.
In the same way as above, we have from this
(@) — 2)% + 202 — 4pa)du(é, X) = 0,

which shows that a\ — 2A% + 2a% — 4pa = 0. From this we see that
Va = 0 because of (3.2) and VA = 0. Therefore (4.6) implies that
2A — a = 0, a contradiction. Thus, it follows that du(¢,X) = 0 on
Q. So we have Va = (3\ — 2p) by virtue of (2.23). By Remark 2, we
see that (3.8) and (3.9) are valid. Since the mean curvature of M being
constant, that is, Vp = 0, (3.9) means that p? —2ap+2ar— ¢ = 0, which
implies that (p—A)Va = aVA. From this, (3.2), (3.7) and (4.5) we have
p(p — A) = 3¢, which enables us to obtain VA = 0 and hence 6 = 0 by
virtue of (4.5). Thus, (3.8) gives 2(p — A)(2X — @) + A(BA — 2p) = 0,
which tells us that Va = 0 because p and A are both constant. By (3.7)
we have 2\ — a = 0, a contradiction. Therefore we conclude that € is
void. So by (2.2) we have A¢ = ¢A if a # 0. Owing to Theorem O-MR,
we arrive at the conclusion. d



(1
[2]
(3]
[4]

(6]

(10]
(11]
[12]
[13]
[14]

(18]

[16]
(17]
(18]

(19]

The structure Jacobi Operator on real hypersurfaces 357

References

J. Berndt, Real hypersurfaces with constant principal curvatures in a complex
hyperbolic space, J. Reine Agnew. Math. 395 (1989), 132-141.

T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projec-
tive space, Trans. Amer. Math. Soc. 269 (1982), 481-499.

J. T. Cho and U.-H. Ki, Real hypersurfaces of a complex projective space in
terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.

, Jacobi operators on real hypersurfaces of a complex projective space,
Tsukuba J. Math. 22 (1998), 145-156.

U.-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba
J. Math. 12 (1988), 259-268.

U.-H. Ki, H.-J. Kim, and A.-A. Lee, The Jacobi operator of real hypersurfaces
in a complex space form, Comm. Korean Math. Soc. 13 (1998), 545-560.
U.-H. Ki, S.-J. Kim, and S.-B. Lee, Some characterizations of a real hypersur-
faces of type A, Kyungpook Math. J. 31 (1991), 73-82.

U.-H. Ki, A. A. Lee, and S.-B. Lee, On real hypersurfaces of a complex space
form in terms of Jacobi operators, Comm. Korean Math. Soc. 13 (1998), 317—
336.

U.-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifold of
codimension & in a complex projective space, Nihonkai Math. J. 14 (2003), 1-
16.

U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math.
J. Okayama Univ. 32 (1990), 207-221.

M. Kimura, Real hypersurfaces and complex submanifolds in complex projective
space, Trans. Amer. Math. Soc. 296 (1986), 137-149.

M. Kimura and S. Maeda, Lie derivatives on real hypersurfaces in a complex
projective space, Czechoslovak Math. J. 45 (1995), 135-148.

S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc.
Japan 37 (1985), 515-535.

S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic
space, Geometriae Dedicata 20 (1986), 245-261.

R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, in
Tight and Taut submanifolds, Cambridge Univ. Press (1998(T.E. Cecil and S.S.
Chern, eds.)), 233-305.

M. Okumura, On some real hypersurfaces of a complex projective space, Trans.
Amer. Math. Soc. 212 (1975), 355-364.

R. Takagi, On homogeneous real hypersurfaces in a complex projective space,
Osaka J. Math. 10 (1973}, 495-506.

, Real hypersurfaces in a complex projective space with constant principal
curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.

K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds,
Birkhéuser, 1983.

U-HANG KI, DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVER-
siTY, TAEGU 702-701, KOREA
E-mail: uhang@knu.ac.kr



358 U-Hang Ki, Soo Jin Kim, and Seong-Baek Lee

S00 JIN KIM AND SEONG-BAEK LEE, DEPARTMENT OF MATHEMATICS, CHOSUN
UNIVERSITY, KWANGJU 502-759, KOREA
E-mail: ccamggicee@hanmir.com

sblee@chosun.ac.kr



