• Title/Summary/Keyword: methanotrophs

Search Result 32, Processing Time 0.028 seconds

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai;Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.993-1003
    • /
    • 2013
  • Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

Isolation and Culture of Methanotrophs in Inorganic Medium and Characterization of COD Production, Nutrient Removal (무기배지에서 메탄산화균의 분리배양과 COD 생성 및 탈질.탈인 특성 연구)

  • Kim, I-Tae;Bae, Woo-Keun;Kim, Kwang-Soo;Lee, Hee-Ja
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1198-1204
    • /
    • 2005
  • The objectives of this study were to isolate and culture methanotrophs and to apply them for biological removal of nitrogen and phosphorous. Methanotrophs (dominant species: Methylomonas methanica) were isolated from a landfill cover soil, cultured in a NMS medium, and analyzed to reveal their characteristics of growth and nutrient removal. The methanotrophs themselves can produce substantial amount of organic substances(as COD) including methanol, formaldehyde, and formate, as carbon sources required for denitrification. For instance, the production rate for methanol was $8\;mg/L{\cdot}hr$. Moreover, the analysis of nitrogen and phosphorous in the sludge suggested that the methanotrophs assimilate nitrogen and phosphorous as growth substances.

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

Microbial Community Analysis of a Methane-Oxidizing Biofilm Using Ribosomal Tag Pyrosequencing

  • Kim, Tae-Gwan;Lee, Eun-Hee;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.360-370
    • /
    • 2012
  • Current ecological knowledge of methanotrophic biofilms is incomplete, although they have been broadly studied in biotechnological processes. Four individual DNA samples were prepared from a methanotrophic biofilm, and a multiplex 16S rDNA pyrosequencing was performed. A complete library (before being de-multiplexed) contained 33,639 sequences (average length, 415 nt). Interestingly, methanotrophs were not dominant, only making up 23% of the community. Methylosinus, Methylomonas, and Methylosarcina were the dominant methanotrophs. Type II methanotrophs were more abundant than type I (56 vs. 44%), but less richer and diverse. Dominant non-methanotrophic genera included Hydrogenophaga, Flavobacterium, and Hyphomicrobium. The library was de-multiplexed into four libraries, with different sequencing efforts (3,915 - 20,133 sequences). Sorrenson abundance similarity results showed that the four libraries were almost identical (indices > 0.97), and phylogenetic comparisons using UniFrac test and P-test revealed the same results. It was demonstrated that the pyrosequencing was highly reproducible. These survey results can provide an insight into the management and/or manipulation of methanotrophic biofilms.

Effect of Ammonium Chloride on the Mixed Methanotrophs Species Composition and Methanol Metabolism (염화암모늄 영향에 따른 혼합종 메탄산화균의 종조성 변화 및 메탄올 대사 특성)

  • Kim, I Tae;Yoon, Younghan
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.27-42
    • /
    • 2018
  • This study analyzed the utility of ammonium chloride ($NH_4Cl$) as a nitrogen source for methanotroph communities. When cultured in nitrate mineral salt (NMS) medium, the methanotroph community we identified four families, seven genera, and 16 type I and type II species of methanotrophs. Among species in the Methylobacter genus, Methylobacter marinus could be actively cultured in NMS medium without NaCl addition. Following the addition of 25 mM $NH_4Cl$, the numbers of the type I genera Methylomonas, Methylococcus, and Methylobacter were increased, whereas the numbers of the type II genera Methylocystis and Methylosinus were decreased after 5 days. In methanotroph communities, certain concentrations of $NH_4Cl$ affected methane consumption and growth of methanotrophs at the community level. $NH_4Cl$ caused a considerable decrease in the methane consumption rate and the expression of soluble methane monooxygenases (sMMOs) but did not inhibit the growth of Methylomonas methanica expressing sMMO. These results could be attributed to competitive antagonism of MMOs due to their direct involvement in ammonia oxidation.

Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila

  • Patel, Sanjay K.S.;Mardina, Primata;Kim, Sang-Yong;Lee, Jung-Kul;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.717-724
    • /
    • 2016
  • Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30℃, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml-1 inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity (메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향)

  • Jeong, So-Yeon;Yoon, Hee-Young;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.