Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02074

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane  

Mardina, Primata (Department of Chemical Engineering, Konkuk University)
Li, Jinglin (Department of Chemical Engineering, Konkuk University)
Patel, Sanjay K.S. (Institute of SK-KU Biomaterials)
Kim, In-Won (Department of Chemical Engineering, Konkuk University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Selvaraj, Chandrabose (Institute of SK-KU Biomaterials)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1234-1241 More about this Journal
Abstract
Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.
Keywords
Biocatalyst; immobilization; methane; methanol; Methylocella tundrae; whole-cell immobilization;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Bose R, Balasingam SK, Shin S, Jin Z, Kyon D-H, Jun Y, Min Y-S. 2015. Importance of hydrophilic pretreatment in the hydrothermal growth of amorphous molybdenum sulfide for hydrogen evolution catalysis. Langmuir 31: 5220-5227.   DOI
2 Chi Z-F, Lu W-J, Wang H-T. 2015. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 25: 423-430.   DOI
3 Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, et al. 2004. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 54: 151-156.   DOI
4 Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57.   DOI
5 Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.   DOI
6 Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K. 2015. Repeated production of ʟ-xylulose by an immobilized whole-cell biocatalyst harboring ʟ-arabinitol dehydrogenase coupled with an NAD+ regeneration system. Biochem. Eng. 96: 23-28.   DOI
7 Ge X, Yang L, Sheets JP, Yu Z, Li Y. 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475.   DOI
8 Han J-S, Ahn C-M, Mahanty B, Kim C-G. 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171: 1487-1499.   DOI
9 Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY. 2015. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380.   DOI
10 Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605.   DOI
11 Jamil M, Ahmad F, Jeon YJ. 2016. Renewable energy technologies adopted by the UAE: prospects and challenges - A comprehensive overview. Renew. Sustain. Energy Rev. 55: 1181-1194.   DOI
12 Jung S-J, Kim S-H, Chung I-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83: 322-327.   DOI
13 Kalyani D, Lee K-M, Kim T-S, Li J, Dhiman SS, Kang YC, Lee J-K. 2013. Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107: 815-822.   DOI
14 Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, Lee J-K. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 10: 1-17.   DOI
15 Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioproc. Eng. 15: 476-480.   DOI
16 Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol. 25: 1108-1113.   DOI
17 Kim T-S, Jung H-M, Kim S-Y, Zhang L, Sigdel S, Park J-H, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100.   DOI
18 Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388.   DOI
19 Kopp DA, Lippard SJ. 2002. Soluble methane monooxygenase: activation of dioxygen and methane. Chem. Biol. 6: 568-576.
20 Kumar P, Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561.   DOI
21 Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W. 2012. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123: 636-645.   DOI
22 Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.   DOI
23 Lee S-H, Kwon M-A, Choi S, Kim S, Kim J, Shin Y-A, Kim K-H. 2015. A new shuttle plasmid that stably replicates in Clostridium acetobutylicum. J. Microbiol. Biotechnol. 25: 1702-1708.   DOI
24 Mehta PK, Mishra S, Ghose TK. 1991. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37: 551-556.   DOI
25 Morton JD, Hayes KF, Semrau JD. 2000. Bioavailability of chelated and soil-adsorbed copper to Methylosinus trichosporium OB3b. Environ. Sci. Technol. 34: 4917-4922.   DOI
26 Patel SKS, Choi S-H, Kang Y-C, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738.   DOI
27 Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724.   DOI
28 Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee J-K. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647.   DOI
29 Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee J-K, Kalia VC. 2014. Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int. J. HydrogenEnergy 39: 14663-14668.   DOI
30 Patel SKS, Kumar P, Singh M, Lee J-K, Kalia VC. 2015. Integrative approach to produce hydrogen and polyhydroxy alkanoate from biowaste using defined bacterial cultures. Bioresour. Technol. 176: 136-141.   DOI
31 Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391.   DOI
32 Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D. 2014. An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52.   DOI
33 Pierie F, Van Someren CEJ, Benders RMJ, Bekkering J, Van Gemert WJT, Moll HC. 2015. Environmental and energy system analysis of bio-methane production pathways: a comparison between feedstocks and process optimizations. Appl. Energy 160: 456-466.   DOI
34 Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862.   DOI
35 Rodrigues ADS, Salgado BVAM. 2009. Analysis of methane biodegradation by Methylosinus trichosporium OB3b. Braz. J. Microbiol. 40: 301-307.   DOI
36 Rahman AT, Lee SJ, Jung SW. 2015. Evaluation of timetemperature integrators (TTIs) with microorganism-entrapped microbeads produced using homogenization and SPG membrane emulsification techniques. J. Microbiol. Biotechnol. 2058-2071.   DOI
37 Razumovsky SD, Efremenko EN, Makhlis TA, Senko OV, Bikhovsky MY, Podmasterev VV, Varfolomeev SD. 2008. Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russ. Chem. Bull. Int. Ed. 57: 1633-1636.   DOI
38 Ricci MA, Russo A, Pisano I, Palmieri L, Angelis MD, Agrimi G. 2015. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J. Microbiol. Biotechnol. 25: 893-902.   DOI
39 Sheets JP, Ge X, Li Y-F, Yu Z, Li Y. 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201: 50-57.   DOI
40 Sigdel S, Hui G, Smith TJ, Murrell JC, Lee J-K. 2015. Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg. Med. Chem. Lett. 25: 1611-1615.   DOI
41 Strong PJ, Xie S, Clarke WP. 2015. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49: 4001-4018.   DOI
42 Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.   DOI
43 Zhao C, Deng Y, Wang X, Li Q, Huang Y, Liu B. 2014. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from great basin hot springs with agricultural residues and energy crops. J. Microbiol. Biotechnol. 24: 1280-1290.   DOI
44 Trop P, Anicic B, Goricanec D. 2014. Production of methanol from a mixture of torrefied biomass and coal. Energy 77: 125-132.   DOI
45 Xin J-Y, Cui J-R, Niu J-Z, Hua S-F, Xia C-G, Li S-B, Zhu L-M. 2004. Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnology 3: 67-71.   DOI
46 Yoo Y-S, Hana J-S, Ahn C-M, Kim C-G. 2015. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ. Technol. 36: 983-991.   DOI