Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane |
Mardina, Primata
(Department of Chemical Engineering, Konkuk University)
Li, Jinglin (Department of Chemical Engineering, Konkuk University) Patel, Sanjay K.S. (Institute of SK-KU Biomaterials) Kim, In-Won (Department of Chemical Engineering, Konkuk University) Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University) Selvaraj, Chandrabose (Institute of SK-KU Biomaterials) |
1 | Bose R, Balasingam SK, Shin S, Jin Z, Kyon D-H, Jun Y, Min Y-S. 2015. Importance of hydrophilic pretreatment in the hydrothermal growth of amorphous molybdenum sulfide for hydrogen evolution catalysis. Langmuir 31: 5220-5227. DOI |
2 | Chi Z-F, Lu W-J, Wang H-T. 2015. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 25: 423-430. DOI |
3 | Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, et al. 2004. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 54: 151-156. DOI |
4 | Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57. DOI |
5 | Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353. DOI |
6 | Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K. 2015. Repeated production of ʟ-xylulose by an immobilized whole-cell biocatalyst harboring ʟ-arabinitol dehydrogenase coupled with an NAD+ regeneration system. Biochem. Eng. 96: 23-28. DOI |
7 | Ge X, Yang L, Sheets JP, Yu Z, Li Y. 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475. DOI |
8 | Han J-S, Ahn C-M, Mahanty B, Kim C-G. 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171: 1487-1499. DOI |
9 | Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY. 2015. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380. DOI |
10 | Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605. DOI |
11 | Jamil M, Ahmad F, Jeon YJ. 2016. Renewable energy technologies adopted by the UAE: prospects and challenges - A comprehensive overview. Renew. Sustain. Energy Rev. 55: 1181-1194. DOI |
12 | Jung S-J, Kim S-H, Chung I-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83: 322-327. DOI |
13 | Kalyani D, Lee K-M, Kim T-S, Li J, Dhiman SS, Kang YC, Lee J-K. 2013. Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107: 815-822. DOI |
14 | Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, Lee J-K. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 10: 1-17. DOI |
15 | Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioproc. Eng. 15: 476-480. DOI |
16 | Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol. 25: 1108-1113. DOI |
17 | Kim T-S, Jung H-M, Kim S-Y, Zhang L, Sigdel S, Park J-H, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100. DOI |
18 | Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388. DOI |
19 | Kopp DA, Lippard SJ. 2002. Soluble methane monooxygenase: activation of dioxygen and methane. Chem. Biol. 6: 568-576. |
20 | Kumar P, Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561. DOI |
21 | Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W. 2012. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123: 636-645. DOI |
22 | Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950. DOI |
23 | Lee S-H, Kwon M-A, Choi S, Kim S, Kim J, Shin Y-A, Kim K-H. 2015. A new shuttle plasmid that stably replicates in Clostridium acetobutylicum. J. Microbiol. Biotechnol. 25: 1702-1708. DOI |
24 | Mehta PK, Mishra S, Ghose TK. 1991. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37: 551-556. DOI |
25 | Morton JD, Hayes KF, Semrau JD. 2000. Bioavailability of chelated and soil-adsorbed copper to Methylosinus trichosporium OB3b. Environ. Sci. Technol. 34: 4917-4922. DOI |
26 | Patel SKS, Choi S-H, Kang Y-C, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738. DOI |
27 | Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724. DOI |
28 | Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee J-K. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647. DOI |
29 | Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee J-K, Kalia VC. 2014. Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int. J. HydrogenEnergy 39: 14663-14668. DOI |
30 | Patel SKS, Kumar P, Singh M, Lee J-K, Kalia VC. 2015. Integrative approach to produce hydrogen and polyhydroxy alkanoate from biowaste using defined bacterial cultures. Bioresour. Technol. 176: 136-141. DOI |
31 | Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391. DOI |
32 | Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D. 2014. An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52. DOI |
33 | Pierie F, Van Someren CEJ, Benders RMJ, Bekkering J, Van Gemert WJT, Moll HC. 2015. Environmental and energy system analysis of bio-methane production pathways: a comparison between feedstocks and process optimizations. Appl. Energy 160: 456-466. DOI |
34 | Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862. DOI |
35 | Rodrigues ADS, Salgado BVAM. 2009. Analysis of methane biodegradation by Methylosinus trichosporium OB3b. Braz. J. Microbiol. 40: 301-307. DOI |
36 | Rahman AT, Lee SJ, Jung SW. 2015. Evaluation of timetemperature integrators (TTIs) with microorganism-entrapped microbeads produced using homogenization and SPG membrane emulsification techniques. J. Microbiol. Biotechnol. 2058-2071. DOI |
37 | Razumovsky SD, Efremenko EN, Makhlis TA, Senko OV, Bikhovsky MY, Podmasterev VV, Varfolomeev SD. 2008. Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russ. Chem. Bull. Int. Ed. 57: 1633-1636. DOI |
38 | Ricci MA, Russo A, Pisano I, Palmieri L, Angelis MD, Agrimi G. 2015. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J. Microbiol. Biotechnol. 25: 893-902. DOI |
39 | Sheets JP, Ge X, Li Y-F, Yu Z, Li Y. 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201: 50-57. DOI |
40 | Sigdel S, Hui G, Smith TJ, Murrell JC, Lee J-K. 2015. Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg. Med. Chem. Lett. 25: 1611-1615. DOI |
41 | Strong PJ, Xie S, Clarke WP. 2015. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49: 4001-4018. DOI |
42 | Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152. DOI |
43 | Zhao C, Deng Y, Wang X, Li Q, Huang Y, Liu B. 2014. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from great basin hot springs with agricultural residues and energy crops. J. Microbiol. Biotechnol. 24: 1280-1290. DOI |
44 | Trop P, Anicic B, Goricanec D. 2014. Production of methanol from a mixture of torrefied biomass and coal. Energy 77: 125-132. DOI |
45 | Xin J-Y, Cui J-R, Niu J-Z, Hua S-F, Xia C-G, Li S-B, Zhu L-M. 2004. Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnology 3: 67-71. DOI |
46 | Yoo Y-S, Hana J-S, Ahn C-M, Kim C-G. 2015. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ. Technol. 36: 983-991. DOI |