Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09052

Microbial Community Analysis of a Methane-Oxidizing Biofilm Using Ribosomal Tag Pyrosequencing  

Kim, Tae-Gwan (Department of Environmental Science and Engineering, Ewha Womans University)
Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 360-370 More about this Journal
Abstract
Current ecological knowledge of methanotrophic biofilms is incomplete, although they have been broadly studied in biotechnological processes. Four individual DNA samples were prepared from a methanotrophic biofilm, and a multiplex 16S rDNA pyrosequencing was performed. A complete library (before being de-multiplexed) contained 33,639 sequences (average length, 415 nt). Interestingly, methanotrophs were not dominant, only making up 23% of the community. Methylosinus, Methylomonas, and Methylosarcina were the dominant methanotrophs. Type II methanotrophs were more abundant than type I (56 vs. 44%), but less richer and diverse. Dominant non-methanotrophic genera included Hydrogenophaga, Flavobacterium, and Hyphomicrobium. The library was de-multiplexed into four libraries, with different sequencing efforts (3,915 - 20,133 sequences). Sorrenson abundance similarity results showed that the four libraries were almost identical (indices > 0.97), and phylogenetic comparisons using UniFrac test and P-test revealed the same results. It was demonstrated that the pyrosequencing was highly reproducible. These survey results can provide an insight into the management and/or manipulation of methanotrophic biofilms.
Keywords
Pyrosequencing; community analysis; methanotrophs; biofilm; quantitative real-time PCR;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Loy, A., W. Beisker, and H. Meier. 2005. Diversity of bacteria growing in natural mineral water after bottling. Appl. Environ. Microbiol. 71: 3624-3632.   DOI   ScienceOn
2 Lozupone, C., M. Hamady, and R. Knight. 2006. UniFrac - an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371.   DOI
3 Martineau, C., L. G. Whyte, and C. W. Greer. 2010. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high arctic. Appl. Environ. Microbiol. 76: 5773-5784.   DOI   ScienceOn
4 McDonald, I. R., M. Upton, G. Hall, R. W. Pickup, C. Edwards, J. R. Saunders, et al. 1999. Molecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microb. Ecol. 38: 225-233.   DOI   ScienceOn
5 Modin, O., K. Fukushi, F. Nakajima, and K. Yamamoto. 2010. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Res. 44: 85-96.   DOI   ScienceOn
6 Pan, Y., L. Bodrossy, P. Frenzel, A.-G. Hestnes, S. Krause, C. Luke, et al. 2010. Assessing the impact of inter- as well as intra laboratory variation on reproducibility of microbial community analyses. Appl. Environ. Microbiol. 76: 7451-7458.   DOI   ScienceOn
7 Pettersson, E., J. Lundeberg, and A. Ahmadian. 2009. Generations of sequencing technologies. Genomics 93: 105-111.   DOI   ScienceOn
8 Prosser, J. I. 2010. Replicate or lie. Environ. Microbiol. 12: 1806-1810.   DOI   ScienceOn
9 Rainey, F. A., N. L. Ward-Rainey, P. H. Janssen, H. Hippe, and E. Stackebrandt. 1996. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142: 2087-2095.   DOI   ScienceOn
10 Ramos-Padron, E., S. Bordenave, S. Lin, I. M. Bhaskar, X. Dong, C. W. Sensen, et al. 2011. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ. Sci. Technol. 45: 439-446.   DOI   ScienceOn
11 Rittmann, B. E. 2006. Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol. 24: 261-266.   DOI   ScienceOn
12 Semrau, J. D., A. A. DiSpirito, and S. Yoon. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 1-36.   DOI   ScienceOn
13 Stralis-Pavese, N., A. Sessitsch, A. Weilharter, T. Reichenauer, J. Riesing, J. Csontos, et al. 2004. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6: 347-363.   DOI   ScienceOn
14 Thierry, S., H. Macarie, T. Iizuka, W. Geissdorfer, E. A. Assih, M. Spanevello, et al. 2004. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int. J. Syst. Evol. Microbiol. 54: 2245-2255.   DOI   ScienceOn
15 Tolker-Nielsen, T. and S. Molin. 2000. Spatial organization of microbial biofilm communities. Microb. Ecol. 40: 75-84.
16 Unno, T., J. Jang, D. Han, J. H. Kim, M. J. Sadowsky, O.-S. Kim, et al. 2010. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ. Sci. Technol. 44: 7777-7782.   DOI   ScienceOn
17 Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI   ScienceOn
18 Chao, A., R. L. Chazdon, R. K. Colwell, and T.-J. Shen. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8: 148-159.
19 Blumel, S., M. Contzen, M. Lutz, A. Stolz, and H.-J. Knackmuss. 1998. Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy. Appl. Environ. Microbiol. 64: 2315-2317.
20 Bodrossy, L., N. Stralis-Pavese, J. C. Murrell, S. Radajewski, A. Weilharter, and A. Sessitsch. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582.   DOI   ScienceOn
21 Chao, A., R. L. Chazdon, R. K. Colwell, and T.-J. Shen. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361-371.   DOI   ScienceOn
22 Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y.-W. Lim. 2007. EzTaxon: A Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI   ScienceOn
23 Clapp, L. W., J. M. Regan, F. Ali, J. D. Newman, J. K. Park, and D. R. Noguera. 1999. Activity, structure, and stratification of membrane attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci. Technol. 39: 153-161.
24 Yoon, S., J. Carey, and J. Semrau. 2009. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl. Microbiol. Biotechnol. 83: 949-956.   DOI   ScienceOn
25 Will, C., A. Thurmer, A. Wollherr, H. Nacke, N. Herold, M. Schrumpf, et al. 2010. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 76: 6751-6759.   DOI   ScienceOn
26 Willems, A., J. Busse, M. Goor, B. Pot, E. Falsen, E. Jantzen, et al. 1989. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39: 319-333.   DOI
27 Yoon, J.-H., S.-J. Kang, S. H. Ryu, C. O. Jeon, and T.-K. Oh. 2008. Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int. J. Syst. Evol. Microbiol. 58: 393-397.   DOI   ScienceOn
28 Zhang, H., M. Ziv-El, B. E. Rittmann, and R. Krajmalnik-Brown. 2010. Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membranebiofilm reactors. Environ. Sci. Technol. 44: 5159-5164.   DOI   ScienceOn
29 Costello, A. M., A. J. Auman, J. L. Macalady, K. M. Scow, and M. E. Lidstrom. 2002. Estimation of methanotroph abundance in a freshwater lake sediment. Environ. Microbiol. 4: 443-450.   DOI   ScienceOn
30 Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, et al. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145.   DOI   ScienceOn
31 Droege, M. and B. Hill. 2008. The Genome Sequencer FLXTM System - Longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol. 136: 3-10.   DOI   ScienceOn
32 Gaidos, E., A. Rusch, and M. Ilardo. 2011. Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: Community spatial structure, rare members and nitrogen-cycling guilds. Environ. Microbiol. 13: 1138-1152.   DOI   ScienceOn
33 Gebert, J., A. Grongroft, M. Schloter, and A. Gattinger. 2004. Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiol. Lett. 240: 61-68.   DOI   ScienceOn
34 Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188.   DOI   ScienceOn
35 Hery, M., A. C. Singer, D. Kumaresan, L. Bodrossy, N. Stralis-Pavese, J. I. Prosser, et al. 2008. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J. 2: 92-104.   DOI   ScienceOn
36 Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108.   DOI   ScienceOn
37 Hanson, R. and T. Hanson. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
38 Iguchi, H., H. Yurimoto, and Y. Sakai. 2011. Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int. J. Syst. Evol. Microbiol. 61: 810-815.   DOI   ScienceOn
39 Henckel, T., P. Roslev, and R. Conrad. 2000. Effects of $O_2$ and $CH_4$ on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679.   DOI   ScienceOn
40 Huson, D. H., A. F. Auch, J. Qi, and S. C. Schuster. 2007. MEGAN analysis of metagenomic data. Genome Res. 17: 377-386.   DOI   ScienceOn
41 Kolb, S., C. Knief, S. Stubner, and R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted realtime PCR assays. Appl. Environ. Microbiol. 69: 2423-2429.   DOI   ScienceOn
42 Lambo, A. J. and T. R. Patel. 2007. Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2,4,4'-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp. strain IA3-A. J. Appl. Microbiol. 102: 1318-1329.   DOI   ScienceOn
43 Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI   ScienceOn
44 Lee, E.-H., H. Park, and K.-S. Cho. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313-320.   DOI   ScienceOn
45 Lee, M.-L. T., F. C. Kuo, G. A. Whitmore, and J. Sklar. 2000. Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97: 9834-9839.   DOI   ScienceOn