Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01013

Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila  

Patel, Sanjay K.S. (Institute of SK-KU Biomaterials)
Mardina, Primata (Department of Chemical Engineering, Konkuk University)
Kim, Sang-Yong (BioNgene Co., Ltd)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Kim, In-Won (Institute of SK-KU Biomaterials)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.4, 2016 , pp. 717-724 More about this Journal
Abstract
Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30℃, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml-1 inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.
Keywords
Biogas; greenhouse gases; methane; methanol production; Methylocystis bryophila;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Chi Z-F, Lu W-J, Wang H-T. 2015. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 25: 423-430.   DOI
2 Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57.   DOI
3 Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.   DOI
4 Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT. 2014. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol. Adv. 32: 596-614.   DOI
5 Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K. 2015. Repeated production of ʟ-xylulose by an immobilized whole-cell biocatalyst harboring ʟ-arabinitol dehydrogenase coupled with an NAD+ regeneration system. Biochem. Eng. J. 96: 23-28.   DOI
6 Ge X, Yang L, Sheets JP, Yu Z, Li Y. 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475.   DOI
7 Han J-S, Ahn C-M, Mahanty B, Kim C-G. 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171: 1487-1499.   DOI
8 Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY. 2015. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380.   DOI
9 Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605.   DOI
10 Jamil M, Ahmad F, Jeon YJ. 2016. Renewable energy technologies adopted by the UAE: prospects and challenges - A comprehensive overview. Renew. Sustain. Energy Rev. 55: 1181-1194.   DOI
11 Jung S-J, Kim S-H, Chung I-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83: 322-327.   DOI
12 Kalyani D, Lee K-M, Kim T-S, Li J, Dhiman SS, Kang YC, Lee J-K. 2013. Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107: 815-822.   DOI
13 Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, Lee J-K. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 10: e0120156.   DOI
14 Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L. 2008. Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J. Bacteriol. 190: 3817-3823.   DOI
15 Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol. 25: 1108-1113.   DOI
16 Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.   DOI
17 Kim T-S, Jung H-M, Kim S-Y, Zhang L, Sigdel S, Park J-H, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100.   DOI
18 Kumar P, Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561.   DOI
19 Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388.   DOI
20 Lee S-H, Kwon M-A, Choi S, Kim S, Kim J, Shin Y-A, Kim K-H. 2015. A new shuttle plasmid that stably replicates in Clostridium acetobutylicum. J. Microbiol. Biotechnol. 25: 1702-1708.   DOI
21 Mehta PK, Mishra S, Ghose TK. 1991. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37: 551-556.   DOI
22 Mountfort DO, Pybus V, Wilson R. 1990. Metal ion-mediated accumulation of alcohols during alkane oxidation by whole cells of Methylosinus trichosporium. Enzyme Microb. Technol. 12: 343-348.   DOI
23 Murrell JC, Jetten MS. 2009. The microbial methane cycle. Environ. Microbiol. Rep. 1: 279-284.   DOI
24 Park D, Lee J. 2013. Biological conversion of methane to methanol. Korean J. Chem. Eng. 30: 977-987.   DOI
25 Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D. 2014. An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52.   DOI
26 Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647.   DOI
27 Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC. 2014. Enhancement in hydrogen production by cocultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 39: 14663-14668.   DOI
28 Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC. 2015. Integrative approach to produce hydrogen and polyhydroxy alkanoate from biowaste using defined bacterial cultures. Bioresour. Technol. 176: 136-141.   DOI
29 Pierie F, Van Someren CEJ, Benders RMJ, Bekkering J, Van Gemert WJT, Moll HC. 2015. Environmental and energy system analysis of bio-methane production pathways: a comparison between feedstocks and process optimizations. Appl. Energy 160: 456-466.   DOI
30 Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862.   DOI
31 Razumovsky SD, Efremenko EN, Makhlis TA, Senko OV, Bikhovsky MY, Podmasterev VV, Varfolomeev SD. 2008. Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russ. Chem. Bull. Int. Ed. 57: 1633-1636.   DOI
32 Ricci MA, Russo A, Pisano I, Palmieri L, Angelis MD, Agrimi G. 2015. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J. Microbiol. Biotechnol. 25: 893-902.   DOI
33 Sigdel S, Hui G, Smith TJ, Murrell JC, Lee JK. 2015. Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg. Med. Chem. Lett. 25: 1611-1615.   DOI
34 Senko O, Makhlis T, Bihovsky M, Podmasterev V, Efremenko E, Razumovsky S, Varfolomeyev S. 2007. Methanol production in the flow system with immobilized cells Methylosinus sporium. XV International Workshop on Bioencapsulation. Vienna, Austria, September 6-8, P2-16:1-4.
35 Shamsul NS, Kamarudin SK, Rahman NA, Kofli NT. 2014. An overview on the production of bio-methanol as potential renewable energy. Renew. Sustain. Energy Rev. 31: 578-588.   DOI
36 Sheets JP, Ge X, Li Y-F, Yu Z, Li Y. 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201: 50-57.   DOI
37 Strong PJ, Xie S, Clarke WP. 2015. Methane as a resource:can the methanotrophs add value? Environ. Sci. Technol. 49: 4001-4018.   DOI
38 Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.   DOI
39 Trop P, Anicic B, Goricanec D. 2014. Production of methanol from a mixture of torrefied biomass and coal. Energy 77: 125-132.   DOI
40 Wood PJ, Siddiqui R. 1971. Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Anal. Biochem. 39: 418-428.   DOI
41 Xin J-Y, Cui J-R, Niu J-Z, Hua S-F, Xia C-G, Li S-B, Zhu L-M. 2004. Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnology 3: 67-71.   DOI
42 Zhao C, Deng Y, Wang X, Li Q, Huang Y, Liu B. 2014. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from great basin hot springs with agricultural residues and energy crops. J. Microbiol. Biotechnol. 24: 1280-1290.   DOI
43 Yoo Y-S, Hana J-S, Ahn C-M, Kim C-G. 2015. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ. Technol. 36: 983-991.   DOI