Browse > Article
http://dx.doi.org/10.17640/KSWST.2018.26.6.27

Effect of Ammonium Chloride on the Mixed Methanotrophs Species Composition and Methanol Metabolism  

Kim, I Tae (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
Yoon, Younghan (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of Korean Society of Water Science and Technology / v.26, no.6, 2018 , pp. 27-42 More about this Journal
Abstract
This study analyzed the utility of ammonium chloride ($NH_4Cl$) as a nitrogen source for methanotroph communities. When cultured in nitrate mineral salt (NMS) medium, the methanotroph community we identified four families, seven genera, and 16 type I and type II species of methanotrophs. Among species in the Methylobacter genus, Methylobacter marinus could be actively cultured in NMS medium without NaCl addition. Following the addition of 25 mM $NH_4Cl$, the numbers of the type I genera Methylomonas, Methylococcus, and Methylobacter were increased, whereas the numbers of the type II genera Methylocystis and Methylosinus were decreased after 5 days. In methanotroph communities, certain concentrations of $NH_4Cl$ affected methane consumption and growth of methanotrophs at the community level. $NH_4Cl$ caused a considerable decrease in the methane consumption rate and the expression of soluble methane monooxygenases (sMMOs) but did not inhibit the growth of Methylomonas methanica expressing sMMO. These results could be attributed to competitive antagonism of MMOs due to their direct involvement in ammonia oxidation.
Keywords
Ammonium chloride; Methane monooxygenase; Methanol dehydrogenase; Methanol metabolism; Methanotrophs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 King, G. M., Schnell, S. (1994). Ammonium and Nitrite Inhibition of Methane oxidation by methylobacter albus BG8 and methylosinus trichosporium OB3b at low methane Concentrations. Appl. Environ. Microbiol., 60(10), pp. 3508-3513.
2 Auman, A. J., Stolyar, S., Costello, A. M., Lidstrom, M. E. (2000). Molecular Characterization of Methanotrophic Isolates from Freshwater Lake Sediment. Applied and Environmental Microbiology, 66(12), pp. 5259-5266.   DOI
3 Begonja, A., Hrsak, D. (2001). Effect of Growth Conditions on the Expression, of Soluble Methane Monooxygenase. Food technol. biotechnol., 39(1), pp. 29-35.
4 Mardina, P., Li, J., Patel, S. K. S., Kim, I. W., Lee, J. K., Selvara, C. (2016). Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane. J. Microbiol. Biotechnol., 26(7), pp. 1234-1241.   DOI
5 Han, J. S., Ahn, C. M., Mahanty, B., Kim, C. G. (2013). Partial Oxidative Conversion of Methane to Methanol Through Selective Inhibition of Methanol Dehydrogenase in Methanotrophic Consortium from Landfill Cover Soil. Applied Biochemistry and Biotechnology, 171(6), pp. 1487-1499.   DOI
6 Duan C., Luo M., Xing X. (2011). High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol., 102, pp. 7349-7353.   DOI
7 Palumbo, A. V., Strong-Gunderson, M., Carroll, S. (1997). Retaining and Recovering Enzyme Activity During Degradation of TCE by Methanotrophs. Biotechnology for Fuels and Chemicals, 63-65, pp. 789-796.
8 Anthony, C. (1982). The biochemistry of methylotrophs. Academic Press Ltd. London. ISBN 0-12-058820-X.
9 Anthony, C. (1986). Bacterial oxidation of methane and methanol, Methanotrophic Bacteria 463 Microb. Physiol., 27, pp. 113-210.
10 Dalton, H. (1991). Structure and mechanism of action of the enzymes involved in methane oxidation. In J. W. Kelley (ed.), Applications of enzyme biotechnology. Plenum Press, New York., pp. 55-68.
11 Dalton, H. (1992). Methane oxidation by methanotrophs: physiological and mechanistic implications. pp. In J. C. Murrell and H. Dalton (ed.), Methane and methanol utilizers. Plenum Press. New York., pp. 85-114.
12 Dedysh, S. N., Dunfield, P. F. (2010). Facultative methanotrophs. In: Timmis K. N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer: Berlin. pp. 1967-1976.
13 McDonald, I. R., Miguez, C. B., Rogge, G., Bourque, D., Wendlandt, K. D., Groleau, D., Murrell, J. C. (2006). Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. Microbiology letter., 255(2), pp. 225-232.   DOI
14 Koh, S. C., Bowman, J. P., Sayler, G. S. (1993). Soluble methane mono-oxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol., 59, pp. 960- 967.
15 Prior, S. D., Dalton, H. (1985). The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol., 131, pp. 155-163.
16 Lipscomb, J. D. (1994). Biochemistry of the soluble methane monoxygenase. Annu. Rev. Microbiol., 48, pp. 371-399.   DOI
17 Op den Camp, H. J. M., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten S. (2009). Minireview environmental, genomic, and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 1, pp. 293-306.   DOI
18 Bowman, John P., Lindsay, I. S., Nichols P. D., Hayward, A. C. (1993) Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs, International Journal of Systematic Bacteriology., 43(4), pp. 735-753.   DOI
19 Vorob'ev, A. V., Baani, M., Doronina, N. V., Brady, A. L,, Liesack, W., Dunfield, P. F., Dedysh, S. N. (2011). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol., 61, pp. 2456-2463.   DOI
20 Nguyen, H. H. T., Sheimke, A. K., Jacobs, S. J., Hales, B. J., Lidstrom, M. E., Chan, S. I. (1994). The nature of the copper ions in the membranes containing the particulate methane monoxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem., 269, pp. 14995-15005.
21 Bedard, C., Knowles, R. (1989). Physiology, biochemistry, and specific inhibitors of $CH_4$, $NH_4{^+}$, and CO oxidation by methanotrophsandnitrifiers. Microbiological Reviews., 53(1), pp. 68-84.
22 Thalasso, F., Vallecillo, A., Garcya-Encina, P., Fdz-Polanco, F. (1997). The use of methane as a sole carbon source for wastewater denitrification. Water Res. 31, pp. 55-60.   DOI
23 Houbron, E., Torrijos, M., Capdeville, B. (1999). An alternative use of biogas applied at the water denitrification. Water Sci. Technol., 40, pp. 115-122.
24 Pajapakse, J. P., Scutt, J. E. (1999). Denitrification with natural gas and various new growth media. Water Res., 33, pp. 3723-3734.   DOI
25 Calsen, H. N., Joergensen, L., Degn, H. (1991). Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Appl Microbiol Biotechnol., 35, pp. 124-127.
26 Gulledge, J., Doyle, A. P., Schimel, J. P. (1997). Different $NH^{4+}$ inhibition patterns of soil $CH_4$-oxidisers populations acrosssites. Soil Biol. Biochem., 29, pp. 13-21.   DOI
27 Steudler, P. A., Bowden, R. D., Melillo, J. M., Aber, J. D. (1989). Influence of nitrogen fertilization on methane uptake in forest soils. Nature, 341, pp. 314-316.   DOI
28 Bradford, M. A., Ineson, P., Wookey, P. A., Lappin-Scott, H. M. (2001). The effects of acid nitrogen and acid sulphur deposition on $CH_4$ oxidation in a forest soil : a laboratory study. Soil Biol. Biochem., 33, pp. 1695-1702.   DOI
29 Wang, Z. P., Ineson, P. (2003). Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol. Biochem., 35, pp. 427-433.   DOI
30 Huatsch, B. W., Webster, C. P., Powlson, D. S. (1993). Long-term effects of nitrogen-fertilisation on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biol. Biochem., 26, pp. 1307-1315.
31 Willison, T. W., Webster, C. P., Goulding, K. W. T., Powlson, D. S. (1995). Methane oxidation in temperate soils: effects of land use and the chemical form of nitrogen fertiliser. Chemosphere, 30, pp. 539-546.   DOI
32 Whalen, S. C. (2000). Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biol. Fertil. Soils., 31, pp. 279-287.   DOI
33 Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D., Millham, S. (1993). Exchange of $N_2O$and$CH_4$ between the atmosphere and soils in spruce-fir forests in the northeastern United States. Biogeochemistry, 18, pp. 119-135.
34 Kruger, M., Frenzel, P., Conrad, R. (2001) Microbial processes influencing methane emission from rice fields. Glob Change Biol., 7, pp. 49-63.   DOI
35 Saari, A., Martikainen, P. J., Ferm, A., Ruuskanen, J., De Boer, W., Troelstra, S. R., Laanbroek, H. J. (1997). Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different texture and atmospheric nitrogen deposition. Soil Biol. Biochem., 29, pp. 1625-1632.   DOI
36 Schnell, S., King, G. M. (1995) Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soil. Appl. Environ. Microbiol., 60, pp. 3514-3521.
37 Bender, M., Conrad, R. (1995). Effect of $CH_4$ concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem., 27(12), pp. 1517-1527   DOI
38 Hilger, H., Barlaz, M., Wollum, A. (2000) Landfill $CH_4$ oxidation: response to vegetation, fertilization and liming. J Environ Qual., 29, pp. 324-334.
39 De Visscher, A., Schippers, M., Van, C. O. (2001). Short term response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fert Soils., 33, pp. 231-237.   DOI
40 Kruger, M., Eller, G., Conrad, R., Frenzel, P. (2002). Seasonal variation in pathways of $CH_4$ oxidation in rice fields determined by stable carbon isotopes ands pecific inhibitors. Global Change Biol., 8, pp. 265-280.   DOI
41 Dan, J., Kruger, M., Frenzel, P., Conrad, R. (2001). Effect of a late season urea fertilization on methane emission from a rice field in Italy. Agric. Ecosyst. Environ., 69, pp. 69-80.
42 Mohanty, S. R., Bodelier, P. L. E., Floris, V., Conrad, R. (2006). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol., 72, pp. 1346-1354.   DOI
43 Higgins, I. J., Best, D. J., Hammond, R. C., Scott, D. (1981). Methane-oxidizing microorganisms. capsularus (Bath). Its ability to oxygenate n-alkanes, Microbiological Reviews., 45, pp. 556-590.
44 Auman, A. J., Speake, C. C., Lidstrom, M. E (2001). nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microb., 67, pp. 4009-4016.   DOI
45 Noll, M., Frenzel, P., Conrad, R. (2008). Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol., 65, pp. 125-132.   DOI
46 Park, S., Shah, N. N., Taylor, R. T., Droege, M. W. (1992). Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol. Bioeng., 40(1), pp. 151-157.   DOI
47 Burrows, K. J., Cornish, A., Scott, D., Higgins, I.J. (1984). Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol., 130(12), pp. 3327-3333.
48 Lee, S. W., Im, J., Dispirito, A. A., Bodrossy, L., Barcelona, M., Semrau, J. D. (2009). Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers and denitrifiers. Appl Microbiol Biot., 85, pp. 389-403.   DOI
49 Hoefman, S., Ha, D. van der, Boon, N., Vandamme, P., Vos, P. D., Kim, H. (2014). Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiology, 14, pp. 1-11.   DOI
50 Nyerges, G., Ha, S. K., Stein, L. Y. (2010). Effects of Ammonium and Nitrite on Growth and Competitive Fitness of Cultivated Methanotrophic Bacteria. Appl. Environ. Microbiol., 76(16), pp. 5648-5651.   DOI
51 Oshkin, I., Beck, D. A. C. B, Lamb, A. E., Tchesnokova, V., Benuska, G., McTaggart, T. L., Kalyuzhnaya, M. G., Dedysh, S., Lidstrom, M. E., Chistoserdova, L. (2014). Methane fed microcosms show differential community dynamics and pinpoint specific taxa involved in communal response. The ISME Journal T9, pp. 1119-1129.
52 Patel, S. K., Mardina , P., Kim, S. Y., Lee, J. K., Kim, I. W. (2016) Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol., 26(4), pp. 717-724.   DOI
53 Kim, I. T., Bae, W. K., Kim, K. S., Lee, H. J. (2005). Isolation and Culture of Methanotrophs in Inorganic Medium and Characterization of COD Production, Nutrient Removal. Journal of Korean Society of Environmental Engineers, 27(11), pp. 1198-1204.
54 Kim, I. T., Kim, K. S. (2010). Production Characteristics of Soluble Methane Monooxygenase during growth of Methanotrophs in Methylomonas Genus. Joural of Korean Society of Water Science and Technology, 18(6), pp. 12-17.
55 Brusseau, G. A., Tsien, H. C., Hanson, R. S., Wackett, L. P. (1990). Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation, 1, pp. 19-29.   DOI
56 Madigan, M, T, Martino, J. M. (2006). Brock Biology of Microorganisms (11th ed.). Pearson. 136.
57 Whittenbury, R., Phillips, K. C., Wilkinson, J. F. (2005). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970, 61, 205-218.FEMS Microbiol Lett., 250(2), pp. 287-293.   DOI
58 Tavormina, P. L., Ussler, W., Joye, S. B., Harrison, B. K., Orphan, V. J. (2010). Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME J., 4(5), pp. 700-710.   DOI
59 Flynn, J. D., Hirayama, H., Sakai,Y., Dunfield, P. F., Klotz, M. G., Knief, C., Camp, H. J. M. O., Khmelenina,V. N.,Trotsenko, Y. A., Murrell, J. C., Jeremy D. Semrau, J. D., Svenning, M. M., Stein, L. Y., Kyrpides, N., Shapiro, N., Woyke, T., Bringel, F., Vuilleumier, S., DiSpirito, A. A., Kalyuzhnaya, M.G. (2016). Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems. genome announcements-America society for micro biology., Jan-Feb; 4(1), pp. e01629-15.
60 McDonald, I. R., Smith, K., Lidstrom, M. E. (2005). Methanotrophic populations in estuarine sediment from Newport Bay. California. FEMS Microbiol Lett., 250(2), pp. 287-293.   DOI
61 Lidstrom, M. E. (1988). Isolation and characterization of marine methanotrophs. Antonie van Leeuwenhoek., 54, pp. 189-199.   DOI
62 Bowman, J. P., McCammon, S. A., Skerratt, J. H. (1997). Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-sal inity, meromictic lakes. Microbiology, 143, pp. 1451-1459.   DOI
63 Wartiainen, I., Hestnes, A. G., McDonald, I. R., Svenning, M. M. (2006), Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78u N). Int J Syst Evol Microbiol., 56, pp. 109-113.   DOI
64 Brenner, D. J., Krieg, N. R., Staley, J. T. (2005). Bergey's manual of systematic bacteriology (2nd ed.). New York: Springer. ISBN 978-0-387-68233-4.
65 He, R., Chen, M., Ma, R. C., Su, Y., Zhang, X. (2017). Ammonium conversion and its feedback effect on methane oxidation of Methylosinus sporium. Journal of Bioscience and Bioengineering, 123(4), pp. 466-473.   DOI