Mitigating Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils |
Li, Huai
(Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University)
Chi, Zi-Fang (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University) Lu, Wen-Jing (School of Environment, Tsinghua University) Wang, Hong-Tao (School of Environment, Tsinghua University) |
1 | Tate KR, Walcroft AS, Pratt C. 2012. Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill. Soil Biol. Biochem. 52: 75-81. DOI ScienceOn |
2 | Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J. 2009. Response of methanotrophic activity and community structure to temperature changes in a diffusive counter gradient in an unsaturated porous medium. FEMS Microbiol. Ecol. 69: 202-212. DOI ScienceOn |
3 | Deutzmann JS, Schink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436. DOI ScienceOn |
4 | Vanamstel AR, Swart RJ. 1994. Methane and nitrous-oxide emissions - an introduction. Fertilizer Res. 37: 213-225. DOI |
5 | Whalen SC, Reeburgh WS, Sandbeck KA. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56: 3405-3411. |
6 | Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou JZ, Tiedje JM. 1998. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282: 281-284. DOI ScienceOn |
7 | Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, et al. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci. Biotechnol. Biochem. 62: 1925-1931. DOI ScienceOn |
8 | Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975. DOI |
9 | Gomez KE, Gonzalez-Gil G, Lazzaro A, Schroth MH. 2009. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. Waste Manag. 29: 2518-2526. DOI ScienceOn |
10 | Graham DW, Chaudhary JA, Hanson RS, Arnold RG. 1993. Factors affecting competition between type-I and type-II methanotrophs in 2-organism, continuous-flow reactors. Microbial Ecol. 25: 1-17. |
11 | Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. |
12 | Kightley D, Nedwell DB, Cooper M. 1995. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl. Environ. Microbiol. 61: 592-601. |
13 | He R, Ruan AD, Jiang CJ, Shen DS. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199. DOI ScienceOn |
14 | Henckel T, Friedrich M, Conrad R. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65: 1980-1990. |
15 | Mohanty SR, Bodelier PLE, Conrad R. 2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62: 24-31. DOI ScienceOn |
16 | Henckel T, Roslev P, Conrad R. 2000. Effects of O(2) and CH(4) on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679. DOI ScienceOn |
17 | Kolb S, Knief C, Dunfield PF, Conrad R. 2005. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7: 1150-1161. DOI ScienceOn |
18 | Lu F, He PJ, Guo M, Yang N, Shao LM. 2012. Ammoniumdependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation. J. Environ. Sci. (China) 24: 711-719. DOI ScienceOn |
19 | Morton JD, Hayes KF, Semrau JD. 2000. Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 66: 1730-1733. DOI |
20 | Shen RN, Yu CL, Ma QQ, Li SB. 1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria: Purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Arch. Biochem. Biophys. 345: 223-229. DOI ScienceOn |
21 | Wise MG, McArthur JV, Shimkets LJ. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I and type II methanotrophs whose presence was suggested by cultureindependent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65: 4887-4897. |
22 | Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ. 2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J. Soils Sediments 8: 406-414. DOI |
23 | Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995-15005. |
24 | Seghers D, Siciliano SD, Top EM, Verstraete W. 2005. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol. Biochem. 37: 187-193. DOI ScienceOn |
25 | Rahalkar M, Bussmann I, Schink B. 2007. Methylosoma difficile gen. nov., sp nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol. 57: 1073-1080. DOI ScienceOn |
26 | Scheutz C, Kjeldsen P. 2004. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J. Environ. Qual. 33: 72-79. DOI |
27 | Schroth MH, Eugster W, Gomez KE, Gonzalez-Gil G, Niklaus PA, Oester P. 2012. Above- and below-ground methane fluxes and methanotrophic activity in a landfillcover soil. Waste Manag. 32: 879-889. DOI ScienceOn |
28 | Sproles C. 2009. Intergovernmental panel on climate change (IPCC). Government Information Quarterly 26: 428-429. |
29 | Strous M, Jetten MS. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58: 99-117. DOI ScienceOn |
30 | Bogner JE, Spokas KA, Burton EA. 1997. Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net emissions. Environ. Sci. Technol. 31: 2504-2514. DOI ScienceOn |
31 | Bowman JP, Sly LI, Stackebrandt E. 1995. The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol. 45: 182-185. DOI ScienceOn |
32 | Borjesson G, Chanton J, Svensson BH. 2001. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30: 369-376. DOI ScienceOn |
33 | Borjesson G, Sundh I, Svensson B. 2004. Microbial oxidation of at different temperatures in landfill cover soils. FEMS Microbiol. Ecol. 48: 305-312. DOI ScienceOn |
34 | Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517. DOI ScienceOn |
35 | Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH. 1998. Microbial oxidation of at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol. Ecol. 26: 207-217. DOI ScienceOn |
36 | Chanton JP, Rutkowski CM, Mosher B. 1999. Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ. Sci. Technol. 33: 3755-3760. DOI ScienceOn |
37 | Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z. 2012. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J. Air Waste Manag. Assoc. 62: 278-286. DOI |
38 | Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126: 215-220. DOI |
39 | Auman AJ, Stolyar S, Costello AM, Lidstrom ME. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66: 5259-5266. DOI |
40 | Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594; Erratum. 2005. 71: 1674-1674. DOI |
41 | Bezrukova LV, Nikolenko YI, Nesterov AI, Galchenko VF, Ivanov MV. 1983. Comparative serological analysis of methanotrophic bacteria. Microbiology 52: 626-631. |
42 | Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582. DOI ScienceOn |
43 | Bogner J, Spokas K, Burton E, Sweeney R, Corona V. 1995. Landfills as atmospheric methane sources and sinks. Chemosphere 31: 4119-4130. DOI ScienceOn |