Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12010

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils  

Li, Huai (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University)
Chi, Zi-Fang (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University)
Lu, Wen-Jing (School of Environment, Tsinghua University)
Wang, Hong-Tao (School of Environment, Tsinghua University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 993-1003 More about this Journal
Abstract
Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.
Keywords
Cover soil; denaturing gradient gel electrophoresis (DGGE); methanotrophs; realtime polymerase chain reaction (RT-PCR); semi-aerobic landfill (SAL);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tate KR, Walcroft AS, Pratt C. 2012. Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill. Soil Biol. Biochem. 52: 75-81.   DOI   ScienceOn
2 Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J. 2009. Response of methanotrophic activity and community structure to temperature changes in a diffusive $CH_4/O_2$ counter gradient in an unsaturated porous medium. FEMS Microbiol. Ecol. 69: 202-212.   DOI   ScienceOn
3 Deutzmann JS, Schink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436.   DOI   ScienceOn
4 Vanamstel AR, Swart RJ. 1994. Methane and nitrous-oxide emissions - an introduction. Fertilizer Res. 37: 213-225.   DOI
5 Whalen SC, Reeburgh WS, Sandbeck KA. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56: 3405-3411.
6 Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou JZ, Tiedje JM. 1998. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282: 281-284.   DOI   ScienceOn
7 Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, et al. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci. Biotechnol. Biochem. 62: 1925-1931.   DOI   ScienceOn
8 Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975.   DOI
9 Gomez KE, Gonzalez-Gil G, Lazzaro A, Schroth MH. 2009. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. Waste Manag. 29: 2518-2526.   DOI   ScienceOn
10 Graham DW, Chaudhary JA, Hanson RS, Arnold RG. 1993. Factors affecting competition between type-I and type-II methanotrophs in 2-organism, continuous-flow reactors. Microbial Ecol. 25: 1-17.
11 Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
12 Kightley D, Nedwell DB, Cooper M. 1995. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl. Environ. Microbiol. 61: 592-601.
13 He R, Ruan AD, Jiang CJ, Shen DS. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199.   DOI   ScienceOn
14 Henckel T, Friedrich M, Conrad R. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65: 1980-1990.
15 Mohanty SR, Bodelier PLE, Conrad R. 2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62: 24-31.   DOI   ScienceOn
16 Henckel T, Roslev P, Conrad R. 2000. Effects of O(2) and CH(4) on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679.   DOI   ScienceOn
17 Kolb S, Knief C, Dunfield PF, Conrad R. 2005. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7: 1150-1161.   DOI   ScienceOn
18 Lu F, He PJ, Guo M, Yang N, Shao LM. 2012. Ammoniumdependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation. J. Environ. Sci. (China) 24: 711-719.   DOI   ScienceOn
19 Morton JD, Hayes KF, Semrau JD. 2000. Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 66: 1730-1733.   DOI
20 Shen RN, Yu CL, Ma QQ, Li SB. 1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria: Purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Arch. Biochem. Biophys. 345: 223-229.   DOI   ScienceOn
21 Wise MG, McArthur JV, Shimkets LJ. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I and type II methanotrophs whose presence was suggested by cultureindependent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65: 4887-4897.
22 Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ. 2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J. Soils Sediments 8: 406-414.   DOI
23 Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995-15005.
24 Seghers D, Siciliano SD, Top EM, Verstraete W. 2005. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol. Biochem. 37: 187-193.   DOI   ScienceOn
25 Rahalkar M, Bussmann I, Schink B. 2007. Methylosoma difficile gen. nov., sp nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol. 57: 1073-1080.   DOI   ScienceOn
26 Scheutz C, Kjeldsen P. 2004. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J. Environ. Qual. 33: 72-79.   DOI
27 Schroth MH, Eugster W, Gomez KE, Gonzalez-Gil G, Niklaus PA, Oester P. 2012. Above- and below-ground methane fluxes and methanotrophic activity in a landfillcover soil. Waste Manag. 32: 879-889.   DOI   ScienceOn
28 Sproles C. 2009. Intergovernmental panel on climate change (IPCC). Government Information Quarterly 26: 428-429.
29 Strous M, Jetten MS. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58: 99-117.   DOI   ScienceOn
30 Bogner JE, Spokas KA, Burton EA. 1997. Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net $CH_4$ emissions. Environ. Sci. Technol. 31: 2504-2514.   DOI   ScienceOn
31 Bowman JP, Sly LI, Stackebrandt E. 1995. The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol. 45: 182-185.   DOI   ScienceOn
32 Borjesson G, Chanton J, Svensson BH. 2001. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30: 369-376.   DOI   ScienceOn
33 Borjesson G, Sundh I, Svensson B. 2004. Microbial oxidation of $CH_4$ at different temperatures in landfill cover soils. FEMS Microbiol. Ecol. 48: 305-312.   DOI   ScienceOn
34 Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517.   DOI   ScienceOn
35 Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH. 1998. Microbial oxidation of $CH_4$ at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol. Ecol. 26: 207-217.   DOI   ScienceOn
36 Chanton JP, Rutkowski CM, Mosher B. 1999. Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ. Sci. Technol. 33: 3755-3760.   DOI   ScienceOn
37 Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z. 2012. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J. Air Waste Manag. Assoc. 62: 278-286.   DOI
38 Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126: 215-220.   DOI
39 Auman AJ, Stolyar S, Costello AM, Lidstrom ME. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66: 5259-5266.   DOI
40 Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594; Erratum. 2005. 71: 1674-1674.   DOI
41 Bezrukova LV, Nikolenko YI, Nesterov AI, Galchenko VF, Ivanov MV. 1983. Comparative serological analysis of methanotrophic bacteria. Microbiology 52: 626-631.
42 Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582.   DOI   ScienceOn
43 Bogner J, Spokas K, Burton E, Sweeney R, Corona V. 1995. Landfills as atmospheric methane sources and sinks. Chemosphere 31: 4119-4130.   DOI   ScienceOn