Browse > Article
http://dx.doi.org/10.4014/mbl.1707.07005

Methane Mitigation Technology Using Methanotrophs: A Review  

Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Jung, Hyekyeng (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.3, 2017 , pp. 185-199 More about this Journal
Abstract
Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.
Keywords
Methanotrophs; methane; biotechnology; high-cell density culture; microbial community structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427.   DOI
2 Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19-29.   DOI
3 Lindner AS, Adriaens P, Semrau JD. 2000. Transformation of ortho-substituted biphenyls by Methylosinus trichosporium OB3b: substituent effects on oxidation kinetics and product formation. Arch. Microbiol. 174: 35-41.   DOI
4 Dalton H. 1977. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 114: 273-279.   DOI
5 Shah NN, Park S, Taylor RT, Droege MW. 1992. Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705-712.   DOI
6 Shah NN, Hanna ML, Jackson KJ, Taylor RT. 1995. Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen‐driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng. 45: 229-238.   DOI
7 Lee J, Soni BK, Kelley RL. 1996. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures. Biotechnol. Lett. 18: 903-908.   DOI
8 Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Japan. 4: 51-63.   DOI
9 Han B, Su T, Wu H, Gou Z, Xing X-H, Jiang H, et al. 2009. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83: 669-677.   DOI
10 Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, et al. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185: 5915-5924.   DOI
11 Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem. Eng. J. 109: 112-117.   DOI
12 Adegbola O. 2008. High cell density methanol cultivation of Methylosinus trichosporium OB3b. Department of Chemical Engineering, Master of Science, Queen's University, Kingston
13 Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26: 33-46.   DOI
14 Majdinasab A, Yuan Q. 2017. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 104: 116-130.   DOI
15 Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage. Res. 27: 409-455.   DOI
16 Bajar S, Singh A, Kaushik C, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manage. 53: 136-143.   DOI
17 Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R. 2011. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manage. 31: 864-870.   DOI
18 Siva Shangari G, Agamuthu P. 2012. Enhancing methane oxidation in landfill cover using brewery spent grain as biocover. Malaysian J. Sci. 31: 91-97.   DOI
19 Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y. 2011. Can a breathing biocover system enhance methane emission reduction from landfill? J. Hazard. Mater. 191: 228-233.   DOI
20 Pedersen GB, Scheutz C, Kjeldsen P. 2011. Availability and properties of materials for the Fakse landfill biocover. Waste Manage. 31: 884-894.   DOI
21 Lee EH, Moon KE, Kim TG, Cho KS. 2014. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J. Biotechnol. 184: 56-62.   DOI
22 Lee EH, Moon KE, Cho KS. 2017. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J. Biotechnology 242: 1-10.   DOI
23 Kim GW, Ho A, Kim PJ, Kim SY. 2016. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover. Waste Manage. 55: 306-312.   DOI
24 Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D. 2010. Effectiveness of a Florida landfill biocover for reduction of $CH_4$ and NMHC emissions. Environ. Sci. Technol. 44: 1197-1203.   DOI
25 Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG, et al. 2014. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manage. 34: 1179-1190.   DOI
26 Mei C, Yazdani R, Han B, Mostafid ME, Chanton J, Vander-Gheynst J, et al. 2015. Performance of green waste biocovers for enhancing methane oxidation. Waste Manage. 39: 205-215.   DOI
27 Bohn S, Brunke P, Gebert J, Jager J. 2011. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manage. 31: 854-863.   DOI
28 Geck C, Scharff H, Pfeiffer E-M, Gebert J. 2016. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manage. 56: 280-289.   DOI
29 Cassini F, Scheutz C, Skov BH, Mou Z, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 1. System design and gas distribution. Waste Manage. 63: 213-225.   DOI
30 Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 2. Methane oxidation. Waste Manage. 63: 203-212.   DOI
31 Kim TG, Jeong SY, Cho KS. 2014. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration. J. Biotechnol. 173: 90-97.   DOI
32 Han D, Zhao Y, Xue B, Chai X. 2010. Effect of bio-column composed of aged refuse on methane abatement-A novel configuration of biological oxidation in refuse landfill. J. Environ. Sci. 22: 769-776.   DOI
33 Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe P, Kumar S. 2017. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Bioresour. Technol. 239: 219-225.   DOI
34 Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, et al. 2015. Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem. Eng. J. 277: 318-323.   DOI
35 Zhang X, Kong JY, Xia FF, Su Y, He R. 2014. Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. System.Appl. Microbiol. 37: 296-304.   DOI
36 Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB. 2017. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour. Technol. 231: 124-128.   DOI
37 Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. 2011. Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manage. 31: 1018-1028.   DOI
38 Adams BL, Besnard F, Bogner J, Hilger H. 2011. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Manage. 31: 1065-1073.   DOI
39 Mei J, Wang L, Han D, Zhao Y. 2011. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J. Environ. Sci. 23: 868-874.   DOI
40 Kumaresan D, Héry M, Bodrossy L, Singer AC, Stralis-Pavese N, Thompson IP, et al. 2011. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res. Microbiol. 162: 1027-1032.   DOI
41 Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, et al. 2017. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Manage. 68: 369-377.   DOI
42 Wang X, Cao A, Zhao G, Zhou C, Xu R. 2017. Microbial community structure and diversity in a municipal solid waste landfill. Waste Manage. 66: 79-87.   DOI
43 Boucher O, Folberth GA. 2010. New directions: atmospheric methane removal as a way to mitigate climate change? Atmos. Environ. 44: 3343-3345.   DOI
44 Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, Aines RD. 2012. Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ. Sci. Technol. 46: 6455-6469.   DOI
45 Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305.
46 EPA. 2011. Draft: Global Anthropogenic Non-$CO_2$ GHG Emissions: 1990-2030; U.S. Environmental Protection Agency: Washington, DC.
47 Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, et al. 2014. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst. Appl. Microbiol. 37: 200-207.   DOI
48 Kong JY, Bai Y, Su Y, Yao Y, He R. 2014. Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol. Biochem. 78: 118-127.   DOI
49 Chi Z, Lu W, Wang H, Zhao Y. 2012. Diversity of methanotrophs in a simulated modified biocover reactor. J. Environ. Sci. 24: 1076-1082.   DOI
50 Ait-Benichou S, Jugnia L-B, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manage. 29: 2509-2517.   DOI
51 Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879.   DOI
52 Carothers FP, Schultz HL, Talkington CC. 2003. Mitigation of methane emissions from coal mine ventilation air: An update. US Environmental Protection Agency: Washington, DC.
53 Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152.   DOI
54 Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208.   DOI
55 Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. 105: 300-304.   DOI
56 Zhang W, Ge X, Li YF, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Proc. Biochem. 51: 838-844.   DOI
57 van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, den Camp HJO, et al. 2014. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80: 6782-6791.   DOI
58 Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, et al. 2006. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. USA 103: 2363-2367.   DOI
59 Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, et al. 2007. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic $\gamma$-proteobacterium. Appl. Environ. Microbiol. 73: 3556-3565.   DOI
60 Lee JH, Kim TG, Cho KS. 2012. Isolation and characterization of a facultative methanotroph degrading malodor-causing volatile sulfur compounds. J. Hazard. Mater. 235: 224-229.
61 ReuB J, Rachel R, Kämpfer P, Rabenstein A, Küver J, Droge S, et al. 2015. Isolation of methanotrophic bacteria from termite gut. Microbiol. Res. 179: 29-37.   DOI
62 Bowman JP, McCammon SA, Skerrat JH. 1997. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451-1459.   DOI
63 Bodrossy L, Kovács KL, McDonald IR, Murrell JC. 1999. A novel thermophilic methane-oxidising $\gamma$-Proteobacterium. FEMS Microbiol. Lett. 170: 335-341.
64 Kang TJ, Lee EY. 2016. Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J. Ind. Eng. Chem. 35: 8-13.   DOI
65 Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29: 70-75.   DOI
66 Elliott SJ, Zhu M, Tso L, Nguyen H-HT, Yip JH-K, Chan SI. 1997. Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119: 9949-9955.   DOI
67 Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288.   DOI
68 Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
69 Stanley S, Prior S, Leak D, Dalton H. 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492.   DOI
70 Smith DDS, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). The FEBS J. 182: 667-671.
71 Lontoh S, Zahn JA, DiSpirito AA, Semrau JD. 2000. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol. Lett. 186: 109-113.   DOI
72 Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402.   DOI
73 Green J, Dalton H. 1989. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698-17703.
74 Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333.   DOI