• 제목/요약/키워드: metal oxide

검색결과 2,702건 처리시간 0.04초

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상 (The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes)

  • 김혜민;김병수;김용정;조재필;박병우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF

Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors

  • Shim, Young-Seok;Jang, Ho Won
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.178-183
    • /
    • 2016
  • Semiconductor gas sensors based on metal oxide are widely used in a number of applications, from health and safety to energy efficiency and emission control. Nanomaterials including nanowires, nanorods, and nanoparticles have dominated the research focus in this field owing to their large number of surface sites that facilitate surface reactions. Recently, metal oxide hollow structures using soft templates have been developed owing to their high sensing properties with large-area uniformity. Here, we provide a brief overview of metal oxide hollow structures and their gas-sensing properties from the aspects of template size, morphology, and additives. In addition, a gas-sensing mechanism and perspectives are presented.

전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착 (Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites)

  • 박지원;서곤
    • Korean Chemical Engineering Research
    • /
    • 제46권6호
    • /
    • pp.1029-1038
    • /
    • 2008
  • 전이금속 산화물의 전구체가 들어있는 합성모액을 수열 반응시켜 전이금속 산화물이 고정된 하이드로탈사이트를 제조하여 이들에 대한 이산화질소의 흡착 성질을 조사하였다. 전이금속 산화물의 분산도, 이산화질소의 흡착량 및 흡착상태를 XRD, SEM, XPS, 질소 흡착등온선, 중량식 흡착법, FT-IR, 승온탈착법으로 조사하였다. 전이금속 산화물은 주로 하이드로탈사이트의 표면에 분산 담지되었으며, 철과 니켈 산화물이 고정된 하이드로탈사이트에 이산화질소가 많이 흡장되었다. 철 산화물이 표면에 분산되어 담지되면 이산화질소의 흡장량이 많지만, 철 산화물이 지나치게 많이 담지되면 덩어리져서 표면의 염기점을 차폐하므로 이산화질소의 흡장량이 오히려 줄어들었다. 철 산화물의 고정량이 적절하면 하이드로탈사이트에서 이산화질소의 흡장세기는 약해지지만, 흡장량은 많아지고 수열 안정성이 증진되었다.

알루미늄 기반 Oxide/Metal/Oxide 구조의 투명전극 적용성 기초 연구 (Aluminum Based Oxide/Metal/Oxide Structures for the Application in Transparent Electrodes)

  • 김대균;최두호
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.481-485
    • /
    • 2018
  • In this study, oxide/metal/oxide-type transparent electrodes based on Al and ZnO were investigated. Thin films of these materials were sputter-deposited at room temperature. To evaluate the thickness dependence of the oxide layers, the top and bottom ZnO layers were varied in the range of 5~80 nm and 2.5~20 nm, respectively. When the thicknesses of the top and bottom ZnO layers were fixed at 30 nm and 2.5 nm, a maximum transmitance of 66% and sheet resistance of $16.5{\Omega}/{\square}$ were achieved, which is significantly improved compared with the Al layer without top and bottom ZnO layers showing a maximum transmitance of 44.3% and sheet resistance of $44{\Omega}/{\square}$.

산화막위에 증착된 금속박막과 산화막과의 계면결합에 영향 미치는 열처리 효과 (Annealing Effect on Adhesion Between Oxide Film and Metal Film)

  • 김응수
    • 대한전자공학회논문지SD
    • /
    • 제41권1호
    • /
    • pp.15-20
    • /
    • 2004
  • 산화막위에 증착된 금속박막과 산화막과의 계면효과를 조사하였다. 산화막으로는 현재 반도체소자제조공정에 많이 사용되고 있는 BPSG 산화막과 PETEOS 산화막을 사용하였다. 이 두 종류의 산화막위에 적층구조의 금속박막을 형성한 후, 금속박막의 열처리에 의한 계면의 영향을 SEM (scanning electron microscopy), TEM (transmission electron microscopy), AES (auger electron spectroscopy)를 사용하여 조사하였다. BPSG 산화막위에 증착된 금속박막을 $650^{\circ}C$ 이상에서 RTP anneal을 한 경우, BPSG 산화막과 금속박막의 계면결합상태가 좋지 않았고, BPSG 산화막과 금속박막의 계면에 phosphorus가 축적된 영역을 확인하였다. 반면에 PETEOS 산화막위에 증착된 금속박막의 경우, RTP anneal 온도에 관계없이 계면결합상태는 좋았다. 본 연구에서 BPSG 산화막위에 금속박막을 증착할 경우 RTP anneal 온도는 $650^{\circ}C$ 보다 작게 하여야 함을 알 수 있었다.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Metal-Oxide-Semiconductor 광전소자 (Metal-Oxide-Semiconductor Photoelectric Devices)

  • 강길모;윤주형;박윤창;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성 (The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides)

  • 차광서;이동희;조원준;이영석;김영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성 (The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition)

  • 조남제;이규용
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.