Browse > Article
http://dx.doi.org/10.5369/JSST.2018.27.1.13

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties  

Suh, Jun Min (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National Unversity)
Kim, Do Hong (Department of Materials Science and Engineering, Korea University)
Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National Unversity)
Publication Information
Abstract
Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.
Keywords
Gas sensor; Metal oxides; Anodic oxidation; Nanoporous; Nanotube;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure," Adv. Mater., Vol. 15(7-8), pp. 624-627. 2003.   DOI
2 S. Joo, I. Muto, and N. Hara. "Hydrogen gas sensor using Pt-and Pd-added anodic $TiO_2$ nanotube films," J. Electrochem. Soc. Vol. 157(6), pp. J221-J226, 2010.   DOI
3 J. H. Jeun, and S. H. Hong, "CuO-loaded nano-porous $SnO_2$ films fabricated by anodic oxidation and RIE process and their gas sensing properties." Sens. Actuator B-Chem., Vol. 151(1), pp. 1-7, 2010.   DOI
4 R. A. Rani, A. S. Zoolfakar, J. Z. Ou, M. R. Field, M. Austin, and K. Kalantar-zadeh, "Nanoporous $Nb_2O_5$ hydrogen gas sensor," Sens. Actuator B-Chem., Vol. 176, pp. 149-156, 2013.   DOI
5 J. Kukkola, J. Maklin, N. Halonen, T. Kyllonen, G. Toth, M. Szabo, A. Schchukarev, J. P. Mikkola, H. Jantunen, and K. Kordas, "Gas sensors based on anodic tungsten oxide," Sens. Actuator B-Chem, Vol. 153(2), pp. 293-300, 2011.   DOI
6 D. H. Kim, Y.-S. Shim, H. G. Moon, H. J. Chang, D. Su, S.Y. Kim, J.-S. Kim, B. K. Ju, S.-J. Yoon, and H. W. Jang, "Highly Ordered $TiO_2$ Nanotubes on Patterned Substrates: Synthesis in-Place for Ultrasensitive Chemiresistors," J. Phys. Chem. C, Vol. 117(34), pp. 17824-17831, 2013.   DOI
7 D. H. Kim, Y.-S. Shim, J.-M. Jeon, H. Y. Jeong, S. S. Park, Y.-W. Kim, J.-S. Kim, J.-H. Lee, and H. W. Jang, "Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor," ACS Appl. Mater. Interfaces, Vol. 6(17), pp. 14779-14784, 2014.   DOI
8 D. H. Kim, Y.-S. Shim, and H. W. Jang, "Synthesis of Au- Decorated $TiO_2$ Nanotubes on Patterned Substrates for Selective Gas Sensor," J. Sens. Sci. Tech., Vol. 23(5), pp. 305-309, 2014.   DOI
9 A. Anderson, A. Cheung, and M. Lei, "Evaluation of Hong Kong's indoor air quality management programme: certification scheme, objectives, and technology," Bachelor of Sci. Proj. Rep., Polytechnic Institute, Worchester, MA 2014.
10 T. Tang, R. Gminski, M. Ko?nczo?l, C. Modest, B. Armbruster, and V. Mersch-Sundermann, "Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system," Environ. Mol. Mutagen. Vol. 53, pp. 125-135, 2012.   DOI
11 J. J. Zhang and K. R. Smith, "Indoor air pollution: a global health concern," Br. Med. Bull. Vol. 68(1), pp. 209-225, 2003.   DOI
12 J. M. Suh, Y.-S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J.-M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J.-H. Lee, C.-Y. Kang, and H. W. Jang, "Synergetically Selective Toluene Sensing in Hematite Decorated Nickel Oxide Nanocorals," Adv. Mater. Technol., Vol. 2(3), pp. 1600259, 2017.   DOI
13 J.-M Jeon, T. L. Kim, Y.-S. Shim, Y. R. Choi, S. Lee, K. C. Kwon, S.-H. Hong, Y.-W. Kim, S. Y. Kim, M. Kim, and H. W. Jang, "Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration induced Reduction of Graphene Oxide," Adv. Mater., Vol. 29(15), pp. 1605929, 2017.   DOI
14 Y.-S. Shim, H. G. Moon, D. H. Kim, L. Zhang, S.-J. Yoon, Y. S. Yoon, C.-Y. Kang, and H. W. Jang, "Au-decorated $WO_3$ cross-linked nanodomes for ultrahigh sensitive and selective sensing of $NO_2$ and $C_2H_5OH$," RSC Adv., Vol. 3, No. 26, pp. 10452-10459, 2013.   DOI
15 Y.-S. Shim, D. H. Kim, H. Y. Jeong, Y. H. Kim, S. H. Nahm, C.-Y. Kang, J.-S. Kim, W. Lee, and H. W. Jang, "Utilization of both-side metal decoration in close-packed $SnO_2$ nanodome arrays for ultrasensitive gas sensing," Sens. Actuator B-Chem., Vol. 213, pp. 314-321, 2015.   DOI
16 H. G. Moon, Y.-S. Shim, D. Su, H.-H. Park, S.-J. Yoon, and H. W. Jang, "Embossed $TiO_2$ Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas Sensing Properties," J. Phys. Chem. C, Vol. 115(20), pp. 9993-9999, 2011.   DOI
17 Y.-S. Shim and H. W. Jang, "Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors," J. Sens. Sci. Tech., Vol. 25(3), pp.178- 183, 2016.   DOI
18 K. Lee, Y.-S. Shim, Y. G. Song, S. D. Han, Y.-S. Lee, and C.-Y. Kang, "Highly sensitive sensors based on metal-oxide nanocolumns for fire detection," Sensors, Vol. 17(2), pp. 303, 2017.   DOI
19 Y.-S. Shim, L. Zhang, D. H. Kim, Y. H. Kim, Y. R. Choi, S. H. Nahm, C.-Y. Kang, W. Lee, and H. W. Jang, "Highly sensitive and selective $H_2$ and $NO_2$ gas sensors based on surface-decorated $WO_3$ nanoigloos," Sens. Actuator BChem, Vol. 198, pp. 294-301, 2014   DOI
20 H. G. Moon, Y.-S. Shim, D. H. Kim, H. W. Jang, S. H. Han, H.-H. Park, and S.-J. Yoon, "Highly Ordered Large-Area Colloid Templates for Nanostructured $TiO_2$ Thin Film Gas Sensors," J. Nanosci. Nanotechnol., Vol. 12(4), pp. 3496- 3500, 2012.   DOI
21 S. D. Han, M.-S. Noh, S. Kim, Y.-S. Shim, Y. G. Song, K. Lee, H. R. Lee, S. Nahm, S.-J. Yoon, and J.-S. Kim, "Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of $In_2O_3$ based gas sensor," Sens. Actuator B-chem., Vol. 248, pp. 894-901, 2017.   DOI
22 S. D. Han, H. G. Moon, M.-S. Noh, J. J. Pyeon, Y.-S. Shim, S. Nahm, J.-S. Kim, K. S. Yoo, and C.-Y. Kang, "Self doped nanocolumnar vanadium oxides thin films for highly selective $NO_2$ gas sensing at low temperature," Sens. Actuator BChem., Vol. 241, pp. 40-47, 2017.   DOI
23 H. G. Moon, Y. R. Choi, Y.-S. Shim, K.-I. Choi, J.-H. Lee, J.-S. Kim, S.-J. Yoon, H.-H. Park, C.-Y. Kang, and H. W. Jang, "Extremely sensitive and selective NO probe based on villi-like $WO_3$ nanostructures for application to exhaled breath analyzers," ACS Appl. Mater. Interfaces, Vol. 5(21), pp. 10591-10596, 2013.   DOI
24 H. Masuda, and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, Vol. 268, pp. 1466-1468, 1995.   DOI
25 H. G. Moon, Y.-S. Shim, H. Y. Jeong, M. H. Jeong, J. Y. Jung, S. M. Han, J. K. Kim, J.-S. Kim, H.-H. Park, J.-H. Lee, H. L. Tuller, S.-J. Yoon, and H. W. Jang, "Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors," Sci. Rep., Vol. 2, p. 588, 2012.   DOI
26 J.-M. Jeon, Y.-S. Shim, S. D. Han, D. H. Kim, Y. H. Kim, C.-Y. Kang, J.-S. Kim, M. Kim, and H. W. Jang, "Vertically ordered $SnO_2$ nanobamboos for substantially improved detection of volatile reducing gases," J. Mater. Chem. A, Vol. 3(35), pp. 17939-17945, 2015.   DOI
27 D. H. Kim, D. M. Andoshe, Y.-S. Shim, C.-W. Moon, W. Sohn, S. Choi, T. L. Kim, M. Lee, H. Park, K. Hong, K. C. Kwon, J. M. Suh, J.-S. Kim, J.-H. Lee, and H. W. Jang, "Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces", ACS App. Mater. Interfaces, Vol 8(36), pp. 23793-23800, 2016.   DOI
28 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, Vol. 14, pp. 3160-3163, 1998.   DOI
29 W. Wei, J. M. Macak, P. Schmuki, "High aspect ratio ordered nanoporous $Ta_2O_5$ films by anodization of Ta," Electrochem. Commun., Vol. 10, pp. 428-432, 2008.   DOI
30 T. J. LaTempa, X. J. Feng, M. Paulose, and C. A. Grimes, "Temperature-Dependent Growth of Self-Assembled Hematite (${\alpha}$-$Fe_2O_3$) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties," J. Phys. Chem. C, Vol. 113, pp. 16293-16298, 2009.   DOI
31 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation," J. Mater. Res., Vol. 16(12), pp. 3331-3334, 2001.   DOI
32 P. Roy, S. Berger, and P. Schmuki. "$TiO_2$ nanotubes: synthesis and applications," Angew. Chem. Int. Edit., Vol. 50, (13), pp. 2904-2939, 2011.   DOI
33 H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T, Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina," Appl. Phys. Lett. Vol. 71(19), pp. 2770-2772, 1997.   DOI
34 M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, "Anodic growth of highly ordered $TiO_2$ nanotube arrays to 134 ${\mu}m$ in length." J. Phys. Chem. B, Vol. 110(33), pp. 16179-16184, 2006.   DOI
35 Y. Kwon, H. Kim, S. Lee, I. J. Chin, T. Y. Seong, W. I. Lee, and C. Lee, "Enhanced ethanol sensing properties of $TiO_2$ nanotube sensors," Sens. Actuator B-chem., Vol. 173, pp. 441-446, 2012.   DOI
36 H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, and H. M. Cheng, "Amorphous $TiO_2$ nanotube arrays for low-temperature oxygen sensors," Nanotechnology, Vol.19(40), pp. 405504, 2008.   DOI
37 E. Sennik, Z. Colak, N. KilinC, and Z. Z. Ozturk, "Synthesis of highly-ordered $TiO_2$ nanotubes for a hydrogen sensor," Int. J. Hydrogen Energy, Vol. 35(9), pp. 4420-4427, 2010.   DOI
38 O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, "Hydrogen sensing using titania nanotubes," Sens. Actuator B-Chem., Vol. 93(1), pp. 338-344, 2003.   DOI