• Title/Summary/Keyword: metal coating

Search Result 935, Processing Time 0.027 seconds

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding (고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Lee, Joong Hee
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • In this study, a hybrid metals such as copper (Cu) and nickel (Ni) coated carbon fibers (Ni-Cu/CFs) was prepared by wet laid method to develop a randomly oriented sheet material for high-efficiency electromagnetic interference shielding with the enhanced durability. The prepared sheet materials show a high electromagnetic interference shielding efficiency of 69.4 to 93.0 dB. In addition, the hybrid metals coated Ni-Cu/CFs sheets showed very high durability with harsh chemical/thermal environments due to the effective corrosive and mechanical resistances of Ni surface. In this context, the Ni-Cu/CF sheet possesses longer service life than the Cu/CF sheet, that is, 1.7 times longer.

The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons (표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.226-231
    • /
    • 2007
  • High frequency loss property of nanocrystalline amorphous ribbon with a high resistivity insulation layer of $TiO_2$ and $SiO_2$ was studied. The insulation layer was fabricated by sol-gel method using dip-coating. The optimum composition ratio of metal alkoxide and slurry for fabrication of insulation layer was established and insulation layer with high adhesion was coated on the nanocrystalline amorphous ribbon. Frequency loss of magnetic core material manufactured on nanocrystalline amorphous ribbon with the surface insulation layer decreased over 40 % compared with that of magnetic core material without surface insulation layer. The insertion loss of an inductive coupler, which was prepared by using magnetic core material coated insulation layer, decreased due to reduction of frequency loss for magnetic core material and insertion loss decreased in proportion to frequency.

Roll-type Micro Contact Printing for Fine Patterning of Metal Lines on Large Plastic Substrate (대면적 미세 금속전극 인쇄를 위한 원통형 마이크로 접촉 인쇄공정)

  • Kim, Jun-Hak;Lee, Mi-Young;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.7-14
    • /
    • 2011
  • This paper is related to a roll-type micro-contact printing process. The proper parameters such as coating velocity, inking velocity, printing velocity and printing pressure as well as Ag contents of Ag ink were extracted to perform the fine patterning of Ag electrodes. Additionally we developed a process for PDMS with high uniform thickness. Finally, we obtained the Ag fine electrodes on $4.5cm\;{\times}\;4.5cm$ plastic substrate with the line width of 10 um, thickness less than 300 nm, surface roughness less than 40 nm, and the specific resistance of $2.08\;{\times}\;10^{-5}{\Omega}{\cdot}cm$.

Development of Drug Eluting Stent for the Treatment of Benign Biliary Stricture by Electro-spray Method (전기분사를 이용한 양성담관 협착 치료용 약물방출 스텐트 개발)

  • Shin, Il-Gyun;Kim, Dong-Gon;Kim, Han-Ki;Kim, Sang-Ho;Jeon, Dong-Min;Suh, Tae-Seok;Jang, Hong-Seok
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, along with technology development of endoscopic equipment, the stent technology has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. In this study, paclitaxel-eluting metal stents for treatment of biliary benign stenosis were developed through an electrospray-coating method. Polyether-based polyurethane (PELLETHANE 2363-80AE$^{(R)}$)) and paclitaxel were coated onto the surface of a metallic stent and Pluronic F127 was used as an additive. As a result, physicochemical characterization of paclitaxel via SEM, FTIR, contact angle and XRD techniques revealed the information of solid state of paclitaxel-loaded PU film. The in vitro release profile showed a slower release rate with a higher content of paclitaxel.

Interfacial Adhesion between Screen-Printed Ag and Epoxy Resin-Coated Polyimide (에폭시수지가 도포된 폴리이미드와 스크린 프린팅 Ag 사이의 계면접착력 평가)

  • Park, Sung-Cheol;Kim, Jae-Won;Kim, Ki-Hyun;Park, Se-Ho;Lee, Young-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The interfacial adhesion strengths between screen-printed Ag film and epoxy resin-coated polyimide were evaluated by $180^{\circ}$ peel test method. Measured peel strength value was initially around $164.0{\pm}24.4J/m^2$, while the heat treatment during 24h at $120^{\circ}C$ increase peel strength up to $220.8{\pm}19.2J/m^2$. $85^{\circ}C/85%$ RH temperature/humidity treatment decrease peel strength to $84.1{\pm}50.8J/m^2$, which seems to be attributed to hydrolysis bonding reaction mechanism between metal and adhesive epoxy resin coating layer.

A Study of Micro Freestanding Structure Fabrication using Nickel Electroless Plating And Silicon Anisotropic Etching (무전해 니켈 도금과 실리콘의 이방성 식각을 이용한 미세 가동 구조물의 제작방법에 관한 연구)

  • Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Jae-Ho;Huh, Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.367-374
    • /
    • 2000
  • This paper presents a method to fabricate freestanding structures by (100) silicon anisotropic etching and nickel electroless plating. The electroless plating process is simpler than the electroplating, and provides good coating uniformity and improved mechanical properties. Furthermore, the (100) silicon anisotropic etching in KOH solution with being aligned to <100> direction provides vertical (100) sidewalls on etched (100) surface. In this paper, the effects of the nickel electroless plating condition on the properties of electroless plated metal structures are investigated to apply fabrication of micro structures and then various micro structures are fabricated by nickel electroless plating. And then, the structures are released by silicon anisotropic etching in KOH solution with a large gap between the structure and the substrate. The fabricated cantilever structures are $210\mum$. wide, $5\mum$. thick and $15\mum$. over the silicon substrate, and the comb structure has the comb electrodes which are $4\mum$. wide and $4.3\mum$. thick separated by$1\mum$. It is released by silicon anisotropic etching in KOH solution. The gap between the structure and the substrate is $2.5\mum$.

  • PDF

Characteristics Comparison of Prepared Films According to Influence of Adsorption Inhibitor in the Condition of Deposition (PVD증착용 흡착인히비터의 영향에 따른 제작막의 특성 비교)

  • 이찬식;윤용섭;권식철;김기준;이명훈
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.67-67
    • /
    • 2001
  • The structure zone model has been used to provide an overview of the relationship between the microstructure of the films deposited by PVD and the most prominent deposition condition.s. B.AMovchan and AV.Demchishin have proposed it firstls such model. They concluded that the general features of the resulting structures could be correlated into three zones depending on $T/T_m$. Here T m is the melting point of the coating material and T is the substrate temperature in kelvines. Zone 1 ($T/Tm_) is dominated by tapered macrograins with domed tops, zone 2 ($O.3) by columnar grains with denser boundaries and zone 3 ($T/T_m>O.5$) by equiaxed grains formed by recrystallization. J.AThomton has extended this model to include the effect of the sputtering gas pressure and found a fourth zone termed zone T(transition zone) consisting of a dense array of poorly defined fibrous grains. R.Messier found that the zone I-T boundary (fourth zone of Thorton) varies in a fashion similar to the film bias potential as a function of gas pressure. However, there has not nearly enough model for explaining the change in morphology with crystal orientation of the films. The structure zone model only provide an information about the morphology of the deposited film. In general, the nucleation and growth mechanism for granular and fine structure of the deposited films are very complex in an PVD technique because the morphology and orientation depend not only on the substrate temperature but also on the energy of deposition of the atoms or ions, the kinetic mechanism between metal atoms and argon or nitrogen gas, and even on the presence of impurities. In order to clarify these relationship, AI and Mg thin films were prepared on SPCC steel substrates by PVD techniques. The influence of gas pressures and bias voltages on their crystal orientation and morphology of the prepared films were investigated by SEM and XRD, respectively. And the effect of crystal orientation and morphology of the prepared films on corrosion resistance was estimated by measuring polarization curves in 3% NaCI solution.

  • PDF

Analysis of Induced Voltage on the Gas Pipeline at the Fault in a Underground Power Cables (지중전력케이블에서 고장발생시 인근 가스배관에 유도되는 전압 해석)

  • Bae J. H.;Kim D. K.;Kim K. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.26-32
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power Therefore, there has been and still is a growing concern(safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline, especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion limitation of safety voltage and analysis of induction voltage.

  • PDF