• 제목/요약/키워드: metal/semiconductor interface

검색결과 168건 처리시간 0.026초

열처리 조건에 따른 $HfO_2$/Hf/Si 박막의 MOS 커패시터 특성 (Characterization of $HfO_2$/Hf/Si MOS Capacitor with Annealing Condition)

  • 이대갑;도승우;이재성;이용현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.8-9
    • /
    • 2006
  • Hafnium oxide ($HfO_2$) thin films were deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$. Prior to the deposition of $HfO_2$ films, a thin Hf ($10\;{\AA}$) metal layer was deposited. Deposition temperature of $HfO_2$ thin film was $350^{\circ}C$ and its thickness was $150\;{\AA}$. Samples were then annealed using furnace heating to temperature ranges from 500 to $900^{\circ}C$. The MOS capacitor of round-type was fabricated on Si substrates. Thermally evaporated $3000\;{\AA}$-thick AI was used as top electrode. In this work, We study the interface characterization of $HfO_2$/Hf/Si MOS capacitor depending on annealing temperature. Through AES(Auger Electron Spectroscopy), capacitance-voltage (C-V) and current-voltage (I-V) analysis, the role of Hf layer for the better $HfO_2$/Si interface property was investigated. We found that Hf meta1 layer in our structure effective1y suppressed the generation of interfacial $SiO_2$ layer between $HfO_2$ film and silicon substrate.

  • PDF

Metal/Ferroelectric/Insulator/Semiconductor 구조의 결정 구조 및 전기적 특성에 관한 연구 (Characteristics of the Crystal Structure and Electrical Properties of Metal/Ferroelectric/Insulator/Semiconductor)

  • 신동석;최훈상;최인훈;이호녕;김용태
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.195-200
    • /
    • 1998
  • 본 연구에서는 강유전체 박막의 게이트 산화물로 사용한 $Pt/SrBi_2Ta_2O_9(SBT)/CeO_2/Si(MFS)$와 Pt/SBT/Si(MFS) 구조의 결정 구조 및 전기적 성질 의 차이를 연구하였다. XRD 및 SEM 측정 결과 SBT/$CeO_2$/Si박막은 약5nm정도의 $SiO_2$층 이 형성되었고 비교적 평탄한 계면의 미세구조를 가지는 반면, SBT/Si는 각각 약6nm와 7nm정도의 $SiO_2$층과 비정질 중간상층이 형성되었음을 알 수 있다. 즉 CeO2 박막을 완충층 으로 사용함으로써 SBT박막과 Si기판의 상호 반응을 적절히 억제할 수 있음을 확인하였다. Pt/SBT/$CeO_2/Pt/SiO_2$/와 Pt/SBT/Pt/$SiO_2$/Si구조에서 Polarization-Electric field(P-E) 특 성을 비교해 본 결과 CeO2박막의 첨가에 따라 잔류분극값은 감소하였고 항전계값은 증가하 였다. MFIS구조에서 memory window값은 항전계값과 직접적 관련이 있으므로 이러한 항 전계값의 증가는 MFIS구조에서의 memory window값이 증가할 수 있음을 나타낸다. Pt-SBT(140nm)/$CeO_2$(25nm)/Si구조에서 Capacitance-Voltage(C-V) 측정 결과로부터 동작 전압 4-6V에서 memory wondows가 1-2V정도로 나타났다. SBT박막의 두께가 증가할수록 memory window값은 증가하였는데 memory wondows가 1-2V정도로 나타났다. SBT박막의 두께가 증가할수록 memory window값은 증가하였는데 이는 SBT박막에 걸리는 전압강하가 증가하기 때문인 것으로 생각되어진다. Pt/SBT/$CeO_2$/Si의 누설전류는 10-8A/cm2정도였고 Pt/SBT/Si 구조에서는 약10-6A/cm2정도로 약간 높은 값을 나타내었다.

  • PDF

Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화 (Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate)

  • 김우희;김범수;김형준
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.14-21
    • /
    • 2010
  • Ge은 Si에 비하여 높은 이동도를 갖기 때문에 차세대 고속 metal oxide semiconductor field effect transistors (MOSFETs) 소자를 위한 channel 물질로서 각광받고 있다. 그러나 화학적으로 안정한 게이트 산화막의 부재는 MOS 소자에 Ge channel의 사용에 주요한 장애가 되어왔다. 특히, Ge 기판 위에 고품질의 계면 특성을 갖는 게이트 절연막의 제조는 필수 요구사항이다. 본 연구에서, $HfO_xN_y$ 박막은 Ge 기판 위에 플라즈마 원자층 증착법(plasma-enhanced atomic layer deposition, PEALD)을 이용하여 증착되었다. 플라즈마 원자층 증착공정 동안에 질소는 질소, 산소 혼합 플라즈마를 이용한 in situ 질화법에 의하여 첨가되었다. 산소 플라즈마에 대한 질소 플라즈마의 첨가로 성분비를 조절함으로써 전기적 특성과 계면 성질을 향상시키는데 초점을 맞추어서 연구를 진행하였다. 질소 산소의 비가 1:1이었을 때, EOT의 값의 10% 감소를 갖는 고품질의 소자특성을 보여주었다. X-ray photoemission spectroscopy (XPS)와 high resolution transmission electron microscopy (HR-TEM)를 사용하여 박막의 화학적 결합 구조와 미세구조를 분석하였다.

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • 이원용;김지홍;노지형;문병무;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • 박진주;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

형광물질을 이용한 염료감응태양전지의 효율향상 (Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells)

  • 천종훈;이정관;정미란;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Contact Resistance Reduction between Ni-InGaAs and n-InGaAs via Rapid Thermal Annealing in Hydrogen Atmosphere

  • Lee, Jeongchan;Li, Meng;Kim, Jeyoung;Shin, Geonho;Lee, Ga-won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.283-287
    • /
    • 2017
  • Recently, Ni-InGaAs has been required for high-performance III-V MOSFETs as a promising self-aligned material for doped source/drain region. As downscaling of device proceeds, reduction of contact resistance ($R_c$) between Ni-InGaAs and n-InGaAs has become a challenge for higher performance of MOSFETs. In this paper, we compared three types of sample, vacuum, 2% $H_2$ and 4% $H_2$ annealing condition in rapid thermal annealing (RTA) step, to verify the reduction of $R_c$ at Ni-InGaAs/n-InGaAs interface. Current-voltage (I-V) characteristic of metal-semiconductor contact indicated the lowest $R_c$ in 4% $H_2$ sample, that is, higher current for 4% $H_2$ sample than other samples. The result of this work could be useful for performance improvement of InGaAs n-MOSFETs.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • 신새영;문연건;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Co/Ti(100)Si 이중층을 이용한 에피텍셜 Co 실리사이드의 형성 (Epitaxial Cobalt Silicide Formation using Co/Ti/(100) Si Structure)

  • 권영재;이종무;배대록;강호규
    • 한국재료학회지
    • /
    • 제8권6호
    • /
    • pp.484-492
    • /
    • 1998
  • 단결정 Si기판위의 Co/Ti 이중층으로부터 형성된 Co 실리사이드의 에피텍셜 성장기구에 대하여 조사하였다. 실리사이드화 과정중 Ti원자들이 저온상의 CoSi결정구조의 tetrahedral site들을 미리 점유해 있음으로 인하여, $CoSi_{2}$ 결정구조로 바뀌는 과정에서 Si원자들이 나중에 제위치를 차지하기 어렵게 되는 효과 때문이다. 그리고 Ti중간층은 반응의 초기단계에 Co-Ti-O 삼원계 화합물을 형성하는데, 이 화합물은 실리사이드화 과정중 반응 제어층으로 작용하여 에피텍셜 실리사이드 형성에 중요한 역할을 한다. 최종 열처리 층구조 Ti oxide/Co-Ti-Si/epi/$Cosi_{2}$(100) Si 이었다.

  • PDF

Blistering Induced Degradation of Thermal Stability Al2O3 Passivation Layer in Crystal Si Solar Cells

  • Li, Meng;Shin, Hong-Sik;Jeong, Kwang-Seok;Oh, Sung-Kwen;Lee, Horyeong;Han, Kyumin;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.53-60
    • /
    • 2014
  • Different kinds of post-deposition annealing (PDA) by a rapid thermal process (RTP) are used to enhance the field-effect passivation of $Al_2O_3$ film in crystal Si solar cells. To characterize the effects of PDA on $Al_2O_3$ and the interface, metal-insulator semiconductor (MIS) devices were fabricated. The effects of PDA were characterized as functions of RTP temperature from $400{\sim}700^{\circ}C$ and RTP time from 30~120 s. A high temperature PDA can retard the passivation of thin $Al_2O_3$ film in c-Si solar cells. PDA by RTP at $400^{\circ}C$ results in better passivation than a PDA at $400^{\circ}C$ in forming gas ($H_2$ 4% in $N_2$) for 30 minutes. A high thermal budget causes blistering on $Al_2O_3$ film, which degrades its thermal stability and effective lifetime. It is related to the film structure, deposition temperature, thickness of the film, and annealing temperature. RTP shows the possibility of being applied to the PDA of $Al_2O_3$ film. Optimal PDA conditions should be studied for specific $Al_2O_3$ films, considering blistering.