• Title/Summary/Keyword: mechanical texture

Search Result 471, Processing Time 0.027 seconds

A Study of Effects Exerted on the Mechanical Properties of the Steel and Cast Iron by the Adding B (B첨가에 의한 강 및 주철의 기계적 성질에 미치는 효과)

  • 황용연;권오헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2368-2373
    • /
    • 1994
  • The advancement of the mechanical properties of metal materials caused by a recent high technology contributes to the stability and productivity of mechanical structures. However, the advanced mechanical properties depends on the conditions of crystal boundaries and the improvement of the texture. Although the tensile strength and a hardness of a steel would be increased by the adding B, it seems to be a marked decreases of the toughness which caused in the weaken workability. This study is concerned with a characteristics of the B compound which will be mixed with $H_3BO_3$ and the metallic magnesium. What affected in the mechanical property and texture is checked by the strength and the texture test. As a result, it is shown that the improvement of the mechanical property and the texture homogeneity. In addition, it seems that a molten metal which is added by the B compound is deoxized and cleansed.

Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

Evaluation of Texture Image and Preference to Men's Suit Fabrics according to Mechanical Properties, Hand and Fabric Information of Wool Blended Fabrics (모 혼방직물의 역학적 특성과 태 및 소재 정보에 따른 남성 정장용 소재의 질감이미지와 선호도 평가)

  • Kim, Hee Sook;Na, Mi Hee
    • Korean Journal of Human Ecology
    • /
    • v.23 no.2
    • /
    • pp.317-328
    • /
    • 2014
  • In this study, differences of texture image and preference for men's suit fabrics according to mechanical properties, hand and fabric information were investigated. 55 subjects evaluated texture image and preference of 12 kinds of wool blended fabrics. For statistical analysis, t-test and pearson correlation coefficients were used. The results were as follows: Most of mechanical properties effected on texture images, and bending property and shearing property were effected on tactile preference and purchasing preference. For hand, objective hand values showed correlations with subjective texture images and preferences, but THV had almost no correlations. In sensory images according to presence of fabric information, fabrics were evaluated thinner, lighter, more pliable and smooth by cognition of wool blending ratio. For sensibility images, fabrics were evaluated more refined, intellectual, dignified and less practicable after recognize of wool blending ratio. In preferences, tactile preference was increased and purchasing preference was decreased after recognize fabric information. Therefore, significant differences of texture image and preference were observed according to presence of fabric information.

Evaluation of Texture and Mechanical Property on Annealing Condition of Ni-Plated Hybrid Cu Sheet (어닐링처리에 따른 니켈 도금한 하이브리드 동판의 집합조직 및 기계적 특성평가)

  • Lee, Jung-Il;Lee, Joo-Ho;Cho, Kyung-Won;Kim, Kun-Nam;Kim, Gang-Beom;Jang, Tae-Soon;Park, No-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • It has been reported that copper and copper alloys have a large anisotropy of functional properties such as electrical, thermal and mechanical properties, which means that the texture of polycrystalline alloy should be considered to achieve better properties. In this study, the determination of grain growth orientation and texture formation in the cold-rolled, heat-treated and Ni-plated hybrid copper sheets was investigated. Grain growth direction and texture formation were analyzed by the X-ray pole figure. The influence of texture on the mechanical properties could be quantitatively confirmed by the results from the orientation distribution function and the tensile test. The heat-treated texture in the cold-rolled hybrid copper sheet is also investigated and discussed.

Texture Evolution of Asymmetrically Rolled Mg Alloy Sheets (비대칭 압연한 마그네슘 합금판재의 집합조직 발달)

  • Jeong, H.T.;Lee, K.D.;Lee, S.Y.;Ha, T.K.;Choe, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.64-66
    • /
    • 2007
  • Asymmetric rolling, where circumferential velocities of the upper and lower rolls differ, can be one method to change texture of magnesium alloy sheet by introducing shear deformation throughout the thickness of a sheet. In this study, the texture, microstructure and mechanical properties of AZ31 Mg sheets has been investigated during the symmetrical rolling procedure and the asymmetric rolling procedures of different roll speeds with different roll diameters. Texture of Mg alloy sheets were evaluated by using X-ray diffraction and ODFs were calculated using ADC method. The major texture of rolled specimens can be expressed by ND//(0001) fiber texture. The major fiber texture changed according to the rolling processes and such a slight difference of texture changes the formability of sheets. The mechanical properties were enhanced during asymmetrical rolling.

  • PDF

Effects of Rolling Temperature on the Development of Microstructure, Texture, and Mechanical Properties in AZ31 Magnesium Alloy (AZ31 마그네슘 합금에서 압연온도가 미세조직과 집합조직 및 기계적 특성에 미치는 영향)

  • Park, No-Jin;Han, Sang-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • Wrought magnesium alloys show a low formability at room temperature, and a remarkable anisotropy of mechanical properties make it difficult to use them in a deformation process in industry. The microstructure and crystallographic texture of metals are developed during thermo-mechanical processes, and they are significant to the understanding of the mechanical properties of metals. This work studies the microstructure, texture development and tensile properties of the extruded AZ31 Mg alloy after rolling at 100 and $300^{\circ}C$. After 40% rolling at $100^{\circ}C$, many deformed twins were observed and a relatively weak texture developed. The basal poles were split and rotated towards the rolling direction about $20^{\circ}$. During 60% rolling at $300^{\circ}C$, the dynamic recrystallization (DRX) took place and developed a strong <0001>II ND fiber texture, which influenced the poor formability at room temperature.

Microstructure and Mechanical Properties of Nanocrystalline TiN Films Through Increasing Substrate Bias (기판 바이어스 인가에 따른 나노결정질 TiN 코팅 막의 미세구조와 기계적 성질변화)

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.479-484
    • /
    • 2010
  • Microstructural and mechanical properties of the TiN films deposited on Si substrates under various substrate bias voltages by a reactive magnetron sputtering have been studied. It was found that the crystallographic texture, microstructural morphology and mechanical property of the TiN films were strongly depended on the substrate bias voltage. TiN films deposited without bias exhibited a mixed (200)-(111) texture with a strong (200) texture, which subsequently changed to a strong (111) texture with increasing bias voltage. It is also observed that the crystallite size decreases with increasing bias voltage, which corresponds to the increasing diffraction peak width of XRD patterns. The average surface roughness was calculated from AFM images of the films; these results indicated that the average surface roughness was increased with an increase in the bias voltage of the coatings.

Anisotropy due to Texture Development in FCC Polycrystals (FCC 다결정재의 집합조직 발전에 따른 이방성의 변화)

  • Kim, Eung-Zu;Lee, Yong-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1516-1523
    • /
    • 1996
  • The present study is concerned with the development of anisotropy and deformation texture in polycrystals. The individual grain in an aggregate is assumed to experience the viscoplastic dedformation with crystallographic slip that unsure uniquenessof the active slip systems and shearing rate onthese systems. Two different methods for updating the grain orientation are examined. Texture development for some deformation modes such as plane strain compression, uniaxial tension and simple shear are found. Changes in anisotropic flow potential due to texture development during large deformation are also given. Anisotropic behavior of polycrystals with defferent textures are examined.

Effect of the Texture Shape Aspect Ratio on Friction Reduction in a Hydrodynamic Lubrication Regime (유체윤활영역에서 패턴의 모양비율에 따른 마찰 저감효과)

  • Lee, Daehun;Park, Sang-Shin;Ko, Tae Jo;Shim, Jaesool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Friction occurs when surfaces that are in contact move relatively between solid surfaces, fluid layers, and materials slide against one another. This friction force causes wear on the contact surface, generates unwanted heat and leads to performance degradation. Thus, much research has been performed to avoid friction reduction. Among these studies, a textured surface that has micro patterns on the surface has drawn attention for its ability to reduce friction. A mathematical model is developed in this study to examine friction reduction due to the texture of a surface. Numerical simulations are carried out with respect to various factors such as the shape aspect ratio and texture depth of a diamond-shaped texture in the hydrodynamic lubrication regime. As a result, a shape aspect ratio of 1 is best for friction reduction.

Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method (결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구)

  • Kim, Kyung-Jin;Yoon, Jeong-Whan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.